Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097501    DOI: 10.1088/1674-1056/24/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth and characterization of CaCu3Ru4O12 single crystal

Wang Rong-Juan (王蓉娟)a, Zhu Yuan-Yuan (朱媛媛)a, Wang Li (王理)a, Liu Yong (刘雍)a, Shi Jing (石兢)a, Xiong Rui (熊锐)a, Wang Jun-Feng (王俊峰)b
a Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
b Wuhan High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

High-quality single crystals of A-site ordered perovskite oxides CaCu3Ru4O12 were synthesized by flux method with CuO serving as a flux. The typical size of these single crystals was around 1× 1× 1 mm3 and the lattice constant was determined to be 7.430± 0.0009 Å by using x-ray single crystal diffraction. The surfaces of the samples were identified to be (100) surface. The high quality of the single crystal samples was confirmed by the rocking curve data which have a full width at half maximum of approximately 0.02 degree. The x-ray photoelectron spectroscopy measurement was performed and the temperature-dependent specific heat, magnetic susceptibility, and electric resistivity were measured along the [100] direction of the single crystals. All these measurements showed that the physical properties of CaCu3Ru4O12 single crystals are similar to that of polycrystals. However, the single crystals have a lower Curie susceptibility tail and a smaller residual resistivity than polycrystals, which indicates that the amount of paramagnetic impurities can be controlled by tuning the number of defects in CaCu3Ru4O12 samples.

Keywords:  heavy fermion      single crystal growth      d electron oxides      perovskites  
Received:  22 April 2015      Revised:  25 May 2015      Accepted manuscript online: 
PACS:  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.70.Pq (Ruthenates)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB821404), the National Natural Science Foundation of China (Grant Nos. 51172166 and 61106005), the National Science Fund for Talent Training in Basic Science of China (Grant No. J1210061), and the Doctoral Fund of Ministry of Education of China (Grant No. 20110141110007).

Corresponding Authors:  Liu Yong, Shi Jing     E-mail:  yongliu@whu.edu.cn;jshi@whu.edu.cn

Cite this article: 

Wang Rong-Juan (王蓉娟), Zhu Yuan-Yuan (朱媛媛), Wang Li (王理), Liu Yong (刘雍), Shi Jing (石兢), Xiong Rui (熊锐), Wang Jun-Feng (王俊峰) Growth and characterization of CaCu3Ru4O12 single crystal 2015 Chin. Phys. B 24 097501

[1] Homes C C, Vogt T, Shapiro S M, Wakimoto S and Ramirez A P 2001 Science 293 673
[2] Lunkenheimer P, Fichtl R, Ebbinghaus S G and Loidl A 2004 Phys. Rev. B 70 172102
[3] Zeng Z, Greenblatt M, Subramanian M A and Croft M 1999 Phys. Rev. Lett. 82 3164
[4] Zeng Z, Greenblatt M, Sunstrom J E, Croft M and Khalid S 1999 J. Solid State Chem. 147 185
[5] Kobayashi W, Terasaki I, Takeya J, Tsukada I and Ando Y 2004 J. Phys. Soc. Jpn. 73 2373
[6] Brizé V, Autret-Lambert C, Wolfman J, Gervais M and Gervais F 2011 J. Solid State Chem. 184 2719
[7] Labeau M, Bochu B, Joubert J C and Chenavas J 1980 J. Solid State Chem. 33 257
[8] Subramanian M A and Sleight A W 2002 Solid State Sci. 4 347
[9] Steglich F, Buschinger B, Gegenwart P, Lohmann M, Helfrich R, Langhammer C, Hellmann P, Donnevert L, Thomas S, Link A, Geibel C, Lang M, Sparn G and Assmus W 1996 J. Phys: Condens. Matter 8 9909
[10] Cao G, Korneta O, Chikara S, Delong L E and Schlottmann P 2008 Solid State Commun. 148 305
[11] Klein L, Antognazza L, Geballe T H, Beasley M R and Kapitulnik A 1999 Physica B 259 431
[12] Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2001 Europhys. Lett. 53 354
[13] Krimmel A, Günther A, Kraetschmer W, Dekinger H, Büttgen N, Eyert V, Loidl A, Sheptyakov D V, Scheidt E W and Scherer W 2008 Phys. Rev. B 78 165126
[14] Krimmel A, Günther A, Kraetschmer W, Dekinger H, Büttgen N, Eyert V L A, Sheptyakov D V, Scheidt E W and Scherer W 2009 Phys. Rev. B 80 121101R
[15] Tran T T, Takubo K, Mizokawa T, Kobayashi W and Terasaki I 2006 Phys. Rev. B 73 193105
[16] Sudayama T, Wakisaka Y, Takubo K, Mizokawa T, Kobayashi W, Terasaki I, Tanaka S, Maeno Y, Arita M, Namatame H and Taniguchi M 2009 Phys. Rev. B 80 075113
[17] Kato H, Tsuruta T, Matsumura M, Nishioka T, Sakai H, Tokunaga Y, Kambe S and Walstedt R E 2009 J. Phys. Soc. Jpn. 78 054707
[18] Tanaka S, Shimazui N, Takatsu H, Yonezawa S and Maeno Y 2009 J. Phys. Soc. Jpn. 78 024706
[19] Tanaka S, Takatsu H, Yonezawa S and Maeno Y 2009 Phys. Rev. B 80 035113
[20] Büttgen N, Nidda H A K, Kraetschmer W, Günther A, Widmann S, Riegg S, Krimmel A and Loidl A 2010 J. Low Temp. Phys. 161 148
[21] Kubota N and Mullin J W 1995 J. Cryst. Growth 152 203
[22] Ebbinghaus S, Weidenkaff A and Cavaw R J 2002 J. Solid State Chem. 167 126
[23] Seyama H and Soma M 1984 J. Chem. Soc., Faraday Trans. I 80 237
[24] Okada K and Kotani A 2005 J. Phys. Soc. Jpn. 74 653
[25] Ito A, Masumoto H and GotoT 2006 Mater. Transact. 47 2808
[26] Huang C S, Houalla M, Hercules D M, Kibby C L and Petrakis L 1989 J. Phys. Chem. 93 4540
[27] Cox P A, Egdell R G, Goodenough J B, Hamnett A and Naish C C 1983 J. Phys. C 16 6221
[28] Sekiyama A, Kasai S, Tsunekawa M, Ishida Y, Sing M, Irizawa A, Yamasaki A, Imada S, Muro T, Saito Y, Õnuki Y, Kimura T, Tokura Y and Suga S 2004 Phys. Rev. B 70 060506(R)
[29] Poulston S, Parlett P M, Stone P and Bowker M 1996 Surf. Interf. Anal. 24 811
[30] Xiang X P, Liu X J, Zhao E J, Meng J and Wu Z J 2007 Phys. Rev. B 76 155103
[31] Kikugawa N, Balicas L and Mackenzie A P 2009 J. Phys. Soc. Jpn. 78 014701
[32] Kadowaki K and Woods S B 1986 Solid State Commun. 58 507
[1] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[2] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[3] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[4] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[5] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[6] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[7] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[8] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[9] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[10] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[11] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[12] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[13] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[14] Photodetectors based on inorganic halide perovskites: Materials and devices
Ying Li(李营), Zhi-Feng Shi(史志锋), Xin-Jian Li(李新建), Chong-Xin Shan(单崇新). Chin. Phys. B, 2019, 28(1): 017803.
[15] Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology
Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰). Chin. Phys. B, 2018, 27(9): 097103.
No Suggested Reading articles found!