Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094301    DOI: 10.1088/1674-1056/24/9/094301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Microflow-induced shear stress on biomaterial wall by ultrasound-induced encapsulated microbubble oscillation

Hu Ji-Wen (胡继文)a b, Qian Sheng-You (钱盛友)b, Sun Jia-Na (孙佳娜)a, Lü Yun-Bin (吕云宾)a, Hu Ping (胡苹)a
a School of Mathematics and Physics, University of South China, Hengyang 421001, China;
b School of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  A model of an ultrasound-driven encapsulated microbubble (EMB) oscillation near biomaterial wall is presented and used for describing the microflow-induced shear stress on the wall by means of a numerical method. The characteristic of the model lies in the explicit treatment of different types of wall for the EMB responses. The simulation results show that the radius-time change trends obtained by our model are consistent with the existing models and experimental results. In addition, the effect of the elastic wall on the acoustic EMB response is stronger than that of the rigid wall, and the shear stress on the elastic wall is larger than that of the rigid wall. The closer the EMB to the wall, the greater the shear stress on the wall. The substantial shear stress on the wall surface occurs inside a circular zone with a radius about two-thirds of the bubble radius. This paper may be of interest in the study of potential damage mechanisms to the microvessel for drug and gene delivery due to sonoporation.
Keywords:  encapsulated microbubble      shear stress      sonoporation  
Received:  13 January 2015      Revised:  06 April 2015      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 11174077 and 11474090), the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ3076), the Science Research Program of Education Department of Hunan Province, China (Grant No. 14A127), and the Doctoral Fund of University of South China (Grant No. 2011XQD46).
Corresponding Authors:  Qian Sheng-You     E-mail:  syqian@foxmail.com

Cite this article: 

Hu Ji-Wen (胡继文), Qian Sheng-You (钱盛友), Sun Jia-Na (孙佳娜), Lü Yun-Bin (吕云宾), Hu Ping (胡苹) Microflow-induced shear stress on biomaterial wall by ultrasound-induced encapsulated microbubble oscillation 2015 Chin. Phys. B 24 094301

[1] Gregorčič P, Petkovšek R and Možina J 2007 J. Appl. Phys. 102 094904
[2] Ni B Y, Zhang A M, Wang Q X and Wang B 2012 Acta Mech. Sin. 28 1248
[3] Qamar A and Samtaney R 2014 Fluids. Eng. 137 021301
[4] Yang F, Gu Z X, Jin X and Gu N 2013 Chin. Phys. B 22 104301
[5] Sun L, Huang C W and Wu J R 2013 Biomaterials 34 2107
[6] Chen H, Kreider W, Brayman A A, Bailey M R and Matula T J 2011 Phys. Rev. Lett. 106 034301
[7] Ohl C D, Arora M, Dijkink R, Janve V and Lohse D 2006 Appl. Phys. Lett. 89 074102
[8] Wu J R, Ross J P and Chiu J F 2002 J. Acoust. Soc. Amer. 111 11460
[9] Sundaram J, Mellein B R and Mitragotri S 2003 Biophys. J. 84 3087
[10] Hallow D M, Mahajan A D, McCutchen T E and Prausnitz M R 2006 Ultrasound Med. Biol. 32 1111
[11] Kaddur K, Lebegue L, Tranquart F, Midoux P, Pichon C and Bouakaz A 2010 IEEE Trans. Ultrason Ferroelectr. Freq. Control. 57 1558
[12] Karshafian R, Samac S, Bevan P D and Burns P N 2010 Ultrasonics 50 691
[13] Lewin P A and Bjorno L 1982 J. Acoust. Soc. Am. 71 728
[14] van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate F J, Versluis M and de Jong N 2006 J. Control Release 112 149
[15] Mukundakrishnan K, Ayyaswamy P S and Eckmann D M 2009 J. Biomech. Eng. 131 074516
[16] Mo R Y, Lin S Y and Wang C H 2011 Acta Phys. Sin. 60 114306 (in Chinese)
[17] Nyborg W L 1958 J. Acoust. Soc. Am. 30 329
[18] Krasovitski B and Kimmel E 2004 IEEE. Trans. Ultrason. 51 973
[19] Doinikov A A and Bouakaz A 2010 J. Acoust. Soc. Am. 128 11
[20] Wang L, Tu J, Guo X S, Xu D and Zhang D 2014 Chin. Phys. B 23 124302
[21] Wiedemair W, Tukovic Z, Jasak H, Poulikako D and Kurtcuoglu V 2014 Phys. Fluids 26 062106
[22] Garbin V, Cojoc D, Ferrari E, Di Fabrizio E, Overvelde M L J, van der Meer S M, de Jong N, Lohse D and Versluis M 2007 Appl. Phys. Lett. 90 114103
[23] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56 2924
[24] Brenner M P, Hilgenfeldt S and Lohse D 2002 Rev. Mod. Phys. 74 425
[25] Yang X M and Church C C 2005 J. Acoust. Soc. Am. 118 3595
[26] Lamb H 1945 Hydrodynamics (New York: Dover press)
[27] Qin S P and Ferrara K W 2010 J. Acoust. Soc. Am. 128 1511
[28] Doinikov A A, Aired L and Bouakaz A 2011 Phys. Med. Biol. 56 6951
[29] Hosseinkhah N, Chen H, Matula T J, Burns P N and Hynynen K 2013 J. Acoust. Soc. Am. 134 1875
[30] Wu J R 2007 Prog. Biophys. Mol. Biol 93 363
[31] Ward M, Wu J R and Chiu J F 1999 J. Acoust. Soc. Am. 105 2951
[32] Ward M, Wu J R and Chiu J F 2000 Ultrasound Med. Biol. 26 1169
[33] Zhong P Zhou Y F and Zhu S L 2001 Ultrasound Med. Biol. 27 119
[34] Shao W H and Chen W Z 2014 Acta Phys. Sin. 63 204702 (in Chinese)
[35] Shen Y Y, Wang T F, Chin C T, Diao X F and Chen S P 2013 Chin. Sci. Bull. 58 291
[36] Glaser R 2001 Biophysics (Berlin: Springer) p. 87
[37] Brujan E A, Nahen K, Schmidt P and Vogel A 2001 J. Fluid Mech. 433 251
[38] Wang C H and Cheng J C 2014 Acta Phys. Sin. 63 134301 (in Chinese)
[1] Electronic structure & yield strength prediction for dislocation–Mo complex in the γ phase of nickel-based superalloys
Feng-Hua Liu(刘凤华), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2017, 26(7): 076104.
[2] Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane
Wang Li (王莉), Tu Juan (屠娟), Guo Xia-Sheng (郭霞生), Xu Di (许迪), Zhang Dong (章东). Chin. Phys. B, 2014, 23(12): 124302.
[3] Analytical investigation on mean and turbulent velocity fields of a plane jet
Mi Jian-Chun(米建春) and Feng Bao-Ping(冯宝平) . Chin. Phys. B, 2011, 20(7): 074701.
[4] Finite element modeling of acoustic scattering from an encapsulated microbubble near rigid boundary
Huang Bei(黄蓓), Zhang Yan-Li(张艳丽), Zhang Dong(章东), and Gong Xiu-Fen(龚秀芬). Chin. Phys. B, 2010, 19(5): 054302.
[5] Micro thermal shear stress sensor based on vacuum anodic bonding and bulk-micromachining
Yi Liang(易亮), Ou Yi(欧毅), Shi Sha-Li(石莎莉), Ma Jin(马瑾), Chen Da-Peng(陈大鹏), and Ye Tian-Chun(叶甜春) . Chin. Phys. B, 2008, 17(6): 2130-2136.
[6] Three-dimensional lattice Boltzmann method for simulating blood flow in aortic arch
Kang Xiu-Ying(康秀英), Ji Yu-Pin(吉驭嫔), Liu Da-He(刘大禾), and Jin Yong-Juan(金永娟). Chin. Phys. B, 2008, 17(3): 1041-1049.
[7] Polar molecule dominated electrorheological effect
Lu Kun-Quan(陆坤权), Shen Rong(沈容), Wang Xue-Zhao(王学昭), Sun Gang(孙刚), Wen Wei-Jia(温维佳), and Liu Ji-Xing(刘寄星). Chin. Phys. B, 2006, 15(11): 2476-2480.
[8] ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS
Zhao He-ping (赵鹤平), Liu Zheng-you (刘正猷), Liu You-yan (刘有延). Chin. Phys. B, 2001, 10(1): 35-39.
No Suggested Reading articles found!