Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087803    DOI: 10.1088/1674-1056/24/8/087803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoluminescence of rare-earth ion (Eu3+, Tm3+, and Er3+)-doped and co-doped ZnNb2O6 for solar cells

Gao Sen-Pei (高森沛)a b, Qian Yan-Nan (钱艳楠)c, Wang Biao (王彪)a b
a State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China;
b School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
c School of Materials and Energy, Guangdong University of Technology, Guangzhou 510275, China
Abstract  

Visible converted emissions produced at an excitation of 286 nm in ZnNb2O6 ceramics doped with rare-earth ions (RE = Eu3+, Tm3+, Er3+ or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:ZnNb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped ZnNb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons' recombination of the efficient luminescence centers of edge-shared NbO6 groups. Upon 286-nm excitation, Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of 5D07FJ (J = 1-4) (Eu3+), 1G43H6 (Tm3+), and 2H11/2/4S3/24I15/2 (Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 are (0.50, 0.31), (0.14, 0.19), and (0.29, 0.56), respectively. RE ionco- doped ZnNb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:ZnNb2O6, Eu/Er:ZnNb2O6, and Tm/Er:ZnNb2O6 were calculated to be (0.29, 0.24), (0.45, 0.37), and (0.17, 0.25).

Keywords:  RE:ZnNb2O6      photoluminescence      solar cell  
Received:  21 January 2015      Revised:  17 March 2015      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  42.70.-a (Optical materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 10572155 and 10732100) and the Research Fund for the Doctoral Program of Ministry of Education, China (Grant No. 20130171130003).

Corresponding Authors:  Wang Biao     E-mail:  wangbiao@mail.sysu.edu.cn

Cite this article: 

Gao Sen-Pei (高森沛), Qian Yan-Nan (钱艳楠), Wang Biao (王彪) Photoluminescence of rare-earth ion (Eu3+, Tm3+, and Er3+)-doped and co-doped ZnNb2O6 for solar cells 2015 Chin. Phys. B 24 087803

[1] Huang X Y, Han S Y, Huang W and Liu X G 2013 Chem. Soc. Rev. 42 173
[2] Chen X B, Li S, Ding X L, Yang X D, Liu Q L, Gao Y, Sun P and Yang G J 2014 Chin. Phys. B 23 087809
[3] Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q and Zhou D L 2014 Chin. Phys. B 23 024205
[4] Cheng Y Y, Fückel B, MacQueen R W, Khoury T, Clady R G C R, Schulze T F, Ekins-Daukes N J, Crossley M J, Stannowski B, Lips K and Schmidt T W 2012 Energy Environ. Sci. 5 6953
[5] Chen Y C, Huang W Y and Chen T M 2011 J. Rare Earths 29 907
[6] Chen Y, Wang J, Liu C, Tang J, Kuang X, Wu M and Su Q 2013 Opt. Express 21 3161
[7] Wu J, Wang J, Lin J, Xiao Y, Yue G, Huang M, Lan Z, Huang Y, Fan L, Yin S and Sato T 2013 Sci. Rep. 3 2058
[8] Sun J Y, Sun Y N, Zhu J C, Zeng J H and Du H Y 2013 Chin. Phys. B 22 057803
[9] Lee H J, Kim I T and Hong K S 1997 Jpn. J. Appl. Phys. 36 1318
[10] Pullar RC 2009 J. Am. Ceram. Soc. 92 563
[11] Zhou Y, Qiu Z, Lü M, Ma Q, Zhang A, Zhou G, Zhang H and Yang Z 2007 J. Phys. Chem. C 111 10190
[12] Gou J, Wang Y and Guo H 2009 J. Phys.: Conf. Ser. 152 012081
[13] Hsiao Y J, Fang T H and Ji L W 2011 Mater. Chem. Phys. 130 1187
[14] Wang R, Zhang W, Xu Y and Xing L 2014 Opt. Laser Technol. 58 52
[15] Hsiao Y J, Fang T H and Ji L W 2010 Mater. Lett. 64 2563
[16] Ye J H, Zou Z G and Akiyuki M 2003 Int. J. Hydrogen Energy 28 651
[17] Blasse G, Dirksen G J and Brixner L H 1986 Mater. Chem. Phys. 14 485
[18] Srivastava A M and Ackerman J F 1997 J. Solid State Chem. 134 187
[19] Fragoso D, de Mello Donegá C and Longo R L 2003 J. Lumin. 105 97
[20] Zhou Y, Qiu Z, Lv M, Ma Q, Zhang A and Zhou G 2007 J. Phys. Chem. C 111 10190
[21] Seeta Rama Raju G, Pavitra E and Yu J S 2014 Dalton Trans. 43 9766
[22] Ashdown I 2002 Solid State Lighting II, SPIE 4776 51
[23] Mortimer R J and Varley T S 2011 Displays 32 35
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[5] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[8] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[9] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[10] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[11] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[12] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[13] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[14] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[15] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
No Suggested Reading articles found!