Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086301    DOI: 10.1088/1674-1056/24/8/086301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles verification of CuNNi3 and ZnNNi3 as phonon mediated superconductors

Chen Jian-Yong (陈建勇)a, Wang Xing (王星)b
a Faculty of Science, Guilin University of Aerospace Technology, Guilin 541004, China;
b Bowen College of Management, Guilin University of Technology, Guilin 541006, China
Abstract  Very recently, a new Ni-based antiperovskite nitride superconductor CuNNi3 has been successfully synthesized. We investigate the electronic structures, phonon dispersions, and electron–phonon interactions of CuNNi3 and the isostructual ZnNNi3 by first-principles approach. By analyzing the Eliashberg function we obtain the superconducting transition temperature Tc 3.16 K (3.53 K), which is in good agreement with corresponding experimental Tc 3.2 K (3 K) for CuNNi3 (ZnNNi3). They can be verified as conventional phonon-mediated superconductors.
Keywords:  transition temperature      Ni-based antiperovskite nitride      first-principles  
Received:  09 December 2014      Revised:  30 March 2015      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  63.20.kd (Phonon-electron interactions)  
  74.20.Fg (BCS theory and its development)  
Fund: Project supported by the Scientific Research Fund of Guilin University of Aerospace Technology, China (Grant No. YJ1410).
Corresponding Authors:  Chen Jian-Yong     E-mail:  glcjyong@guat.edu.cn

Cite this article: 

Chen Jian-Yong (陈建勇), Wang Xing (王星) First-principles verification of CuNNi3 and ZnNNi3 as phonon mediated superconductors 2015 Chin. Phys. B 24 086301

[1] He T, Huang Q, Ramirez A P, Wang Y, Regan K A, Rogado N, Hayward M A, Haas M K, Slusky J S, Inumaru K, Zandebergen H W, Ong N P and Cava R J 2001 Nature 411 54
[2] Uehara M, Uehara A, Kozawa K and Kimishima Y 2009 J. Phys. Soc. 78 033702
[3] Helal M A and Islam A K M A 2011 Physica B 406 4564
[4] Zhai H C, Li X F, Du J Y and Ji G F 2012 Chin. Phys. B 21 057102
[5] He B, Dong C, Yang L H, Chen X C, Ge L H, Mu L B and Shi Y G 2013 Supercond. Sci. Technol. 26 125015
[6] Kohn W and Sham L 1965 Phys. Rev. A. 140 1133
[7] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
[8] Blaha P, Schwarz K, Madsen G, Kvaniscka D and Luitz J 2001 Wien2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (ed. Schwarz K, Technische Universtat Wien, Austria)
[9] Okoye C M I 2010 Physica B 405 1562
[10] Xu Y H, Gao F M, Hao X F and Li Z P 2010 Comput. Mater. Sci. 50 737
[11] Blöchl P, Jepsen O and Andersen O 1994 Phys. Rev. B 49 16223
[12] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[13] Rappe A, Rabe K, Kaxiras E and Joannopoulos J 1990 Phys. Rev. B 41 1227
[14] Bauer R, Schmid A, Pavone P and Strauch D 1996 Phys. Rev. B 57 11276
[15] Savrasov S, Savrasov D and Anderson O 1994 Phys. Rev. Lett. 72 372
[16] Weber W 1987 Phys. Rev. Lett. 58 1371
[17] Prafulla K J 2005 Phys. Rev. B 72 214502
[18] Savrasov S and Savrasov D 1996 Phys. Rev. B 54 16487
[19] Kong Y, Dolgov O, Jepsen O and Andersen O 2001 Phys. Rev. B 64 020501
[20] Allen P and Dynes R 1975 Phys. Rev. B 12 905
[21] Mcmillan W 1968 Phys. Rev. 167 331
[22] Liu A, Mazin I and Kortus J 1994 Phys. Rev. Lett. 87 087005
[23] Si C, Liu Z, Duan W H and Liu F 2013 Phys. Rev. Lett. 111 196802
[24] Grimvall G 1981 The Electron–Phonon Interaction in Metals (Amsterdam: North-Holland) pp. 245–250
[25] Zhang A M and Zhang Q M 2013 Chin. Phys. B 22 087103
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!