Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080304    DOI: 10.1088/1674-1056/24/8/080304
GENERAL Prev   Next  

Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature

Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发)
Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  

The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value.

Keywords:  population      excited atom      non-Markovian environment      temperature  
Received:  18 January 2015      Revised:  04 March 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148) and the National Natural Science Foundation of China (Grant No. 11374096).

Corresponding Authors:  Zou Hong-Mei     E-mail:  zhmzc1997@126.com

Cite this article: 

Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发) Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature 2015 Chin. Phys. B 24 080304

[1] Yoo H I and Eberly J H 1985 Phys. Rep. 118 239
[2] Radmore P M 1982 Phys. Rev. A 26 2252
[3] Deng Z and Eberly J H 1986 Phys. Rev. A 34 2492
[4] Cirac J I and Sánchez-Soto L L 1990 Phys. Rev. A 42 2851
[5] Cirac J I and Sánchez-Soto L L 1991 Phys. Rev. A 44 3317
[6] Agarwal G S 1993 Phys. Rev. Lett. 71 1351
[7] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[8] Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53
[9] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[10] Lukin M D 2003 Rev. Mod. Phys. 75 457
[11] Mompart J and Corbalan R 2000 J. Opt. B: Quantum Semiclass. Opt. 2 R7
[12] Lev B, Srinivasan K, Barclay P, Painter O and Mabuchi H 2004 Nanotechnology 15 S556
[13] Florescu L, John S, Quang T and Wang R 2004 Phys. Rev. A 69 013816
[14] Reithmaier J P Seogonk G, Löffler A, et al. 2004 Nature 432 197
[15] John S and Wang J 1990 Phys. Rev. Lett. 64 2418
[16] John S and Quang T 1994 Phys. Rev. A 50 1764
[17] Quang T, Woldeyohannes M, John S and Agarwal G S 1997 Phys. Rev. Lett. 79 5238
[18] Lambropoulos P, Nikolopoulos G M, Nielsen T R and Sären Bay 2000 Rep. Prog. Phys. 63 455
[19] Weimer H 2010 Ph.D. Dissertation, University of Stuttgart, Germany
[20] Saffman M, Waller T and Molmer K 2010 Rev. Mod. Phys. 82 2313, and references therein
[21] Peyronel T, Firstenberg O, Liang Q Y, et al. 2012 Nature 488 57
[22] Cao L, Ke P, Qiao L Y and Zheng Z G 2014 Chin. Phys. B 23 070501
[23] Xiang J D, Qin L G and Tian L J 2014 Chin. Phys. B 23 110305
[24] Qin W, Wang H Y and Long G L 2014 Chin. Phys. B 23 037502
[25] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[26] Liu X and Wu W 2014 Chin. Phys. B 23 070303
[27] Xie D and Wang A M 2014 Chin. Phys. B 23 040302
[28] Liu Y, Jin J S, Li J, Li X Q and Yan Y J 2013 Sci. China A: Phys. Mech. Astron. 56 1866
[29] Guo J L, Li H and Long G L 2013 Quantum Inform. Proc. 12 3421
[30] Guo Y N, Fang M F, Liu X and Yang B Y 2014 Chin. Phys. B 23 034204
[31] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[32] Lu Y, Feng G R, Li Y S, et al. 2015 Sci. Bull. 60 241
[33] Xiao X, Fang M F and Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505
[34] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 J. Phys. A: Math. Theor. 42 485301
[35] Ferraro E, Scala M, Migliore R and Napoli A 2009 Phys. Rev. A 80 042112
[36] Zou H M, Fang M F, Yang B Y, Guo Y N, He W and Zhang S Y 2014 Phys. Scr. 89 115101
[37] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[38] Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
[39] Dalton B J, Barnett S M and Garraway B M 2001 Phys. Rev. A 64 053813
[40] Bellomo B, Franco R Lo and Compagno G 2007 Phys. Rev. Lett. 99 160502
[41] Bellomo B, Franco R Lo and Compagno G 2008 Phys. Rev. A 77 032342
[42] Eckel J, Reina J H and Thorwart M 2009 New J. Phys. 11 085001
[43] Cui W, Xi Z R and Pan Y 2009 J. Phys. A: Math. Theor. 42 155303
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[6] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[10] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[13] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
No Suggested Reading articles found!