Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076106    DOI: 10.1088/1674-1056/24/7/076106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor

Muhammad Zafara, Shabbir Ahmeda, M. Shakila, M. A. Choudharya, K. Mahmoodb
a Simulation Laboratory, Department of Physics, The Islamia University of Bahawalpur 63100, Pakistan;
b Department of Physics, GC University, Faisalabad 68000, Pakistan
Abstract  The structural, electronic, and elastic properties of ZnSe1-xSx for the zinc blende structures have been studied by using the density functional theory. The calculations were performed using the plane wave pseudopotential method, as implemented in Quantum ESPRESSO. The exchange-correlation potential is treated with the local density approximation pz-LDA for these properties. Moreover, LDA+U approximation is employed to treat the “d” orbital electrons properly. A comparative study of the band gap calculated within both LDA and LDA+U schemes is presented. The analysis of results show considerable improvement in the calculation of band gap. The inclusion of compositional disorder increases the values of all elastic constants. In this study, it is found that elastic constants C11, C12, and C44 are mainly influenced by the compositional disorder. The obtained results are in good agreement with literature.
Keywords:  first principles calculations      density functional theory      II-VI semiconductors      electronic and elastic properties  
Received:  07 November 2014      Revised:  02 February 2015      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
  62.20.de (Elastic moduli)  
Corresponding Authors:  Muhammad Zafar     E-mail:  zafartariq2003@yahoo.com

Cite this article: 

Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary, K. Mahmood Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor 2015 Chin. Phys. B 24 076106

[1] Gunshor R L and Nurmikko A V 1997 II-VI Semiconductor Blue/Green Light Emitters 44 (New York: Academic Press)
[2] Armstrong S, Datta P K and Miles R W 2001 Proceedings of 17th European Photovoltaic Solar Energy Conference, October 22-26, 2001, p. 1184
[3] Nakanishi K, Suemune I, Fuji Y, Kuroda Y and Yamanishi M 1991 Jpn. J. Appl. Phys. 30 1399
[4] Han J and Gunshor R L 1997 II-VI Blue/Green Light Emitters: Device Physics and Epitaxial Growth, Semiconductor and Semi-metals (Gunshor R L and Nurmikko A V (eds.)) (Academic Press) p. 17
[5] Dahmani R, Salamanca-Riba L, Nguyen N V, Chandler-Horowitz D and Jonker B T 1994 J. Appl. Phys. 76 514
[6] Cheng H, Depuydt J M, Potts J E and Smith T L 1988 Appl. Phys. Lett. 52 147
[7] De Miguel J L, Shibli S M, Tamargo M C and Skromme B J 1994 Appl. Phys. Lett. 72 534
[8] Chadi D J 1994 Phys. Rev. Lett. 72 534
[9] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257
[10] Ebina A, Fukunaga E and Takahashi T 1974 Phys. Rev. B 10 2495
[11] Song J H, Sim E D, Baek K S and Chang S K 2000 J. Cryst. Growth 214/215 460
[12] Subbaiah Y P V, Prathap P, Reddy K T R, Miles R W and Yi J 2008 J. Thin Solid Films 516 7060
[13] Kassali K and Bouarissa N 2002 Mater. Chem. Phys. 76 255
[14] Mesri D, Dridi Z and Tadjer A 2007 Comput. Mater. Sci. 39 453
[15] Fridjine S, Touihri S, Boubaker K and Amlouk M 2009 J. Cryst. Growth 248 91
[16] Giannozzi P, et al. 2009 J. Phys.: Condens. Matter 21 395502
[17] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] Anisimov V I and Gunnarson O 1991 Phys. Rev. B 43 7570
[20] Wallace D 1998 Thermodynamics of Crystals (in Dover Books on Physics) (Dover Publications)
[21] Karzel H, Potzel W, Köfferlein M, et al., 1996 Phys. Rev. B 53 11425
[22] Monir M E A, Baltache H, Murtaza G, Khenata R, Ahmed W K, Bouhemadou A, Omran S B and Seddik T 2015 J. Magn. Magn. Mater. 374 50
[23] Brahmi B N, Merad A E and Dergal S 2013 Journal of Materials Science and Engineering A 3 192
[24] Imad K, Iftikhar A, Rahnamaye A H A and Maqbool M 2012 J. Appl. Phys. 112 073104
[25] Rabah M, Abbar B, Al-Douri Y, Bouhafs B and Sahraoui B 2003 Mater. Sci. Eng. B 100 163
[26] Ves S, Schwarz U, Christensen N E, Syassen K and Cardona M 1990 Phys. Rev. B 42 9113
[27] Zafar M, Ahmed S, Shakil M and Choudhary M A 2014 Chin. Phys. B 23 106108
[28] Vegard L 1921 Z. Phys. 5 17
[29] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[30] Jobst B, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97
[31] Dridi Z, Bouhafs B and Ruterana P 2005 Comput. Mater. Sci. 33 136
[32] Hassan F E H and Akbardadeh H 2005 Mater. Sci. Eng. B 21 170
[33] Dridi Z, Bouhafs B and Ruterana P 2003 Semond. Sci. Technol. 18 850
[34] Ameri M, Rached D, Rabah M, Khenata R, Benkhettou N, Bouhafs B and Maachou M 2007 Mater. Sci. Semicond. Process. 10 6
[35] Boutaiba M, Zaoui A and Ferhat M 2009 Superlattices Microstruct. 46 823
[36] Gürel H H, Akinci Ö and Ünlü H 2012 Superlattices Microstruct. 51 725
[37] Venghaus H 1979 Phys. Rev. B 19 3071
[38] Moon C Y, Wei S H, Zhu Y Z and Chen G D 2006 Phys. Rev. B 74 233202
[39] Fan X F, Shen Z X, Lu Y M and Kuo J 2009 New J. Phys. 11 093008
[40] Locmelis S, Brunig C, Binnewies M, Borger A, Becker K D, Homann T and Bredow T 2007 J. Mater. Sci. 42 1965
[41] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (Oxford: Claredon)
[42] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[43] Shein I R and Ivanovskii A L 2008 Physica C 468 2224
[44] Hodgins C G and Irwin J C 1975 Phys. Status Solidi A 28 647
[45] Chung D H and Buessen W R 1967 J. Appl. Phys. 38 2535
[46] Wang H Y, Cao J, Huang H Y and Huang J M 2012 Condens. Matter Phys. 15 13705
[47] Berlincourt D, Jaffe H and Shiozawa L R 1963 Phys. Rev. 129 1009
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!