Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068202    DOI: 10.1088/1674-1056/24/6/068202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A theoretical exploration of the influencing factors for surface potential

Liu Xin-Min (刘新敏)a b, Yang Gang (杨刚)a, Li Hang (李航)a, Tian Rui (田锐)a, Li Rui (李睿)a, Ding Wu-Quan (丁武泉)a, Yuan Ruo (袁若)b
a Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China;
b School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
Abstract  Although it has been widely used to probe the interfacial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.
Keywords:  Hofmeister effect      ionic activity      interfacial process      potential distribution  
Received:  15 October 2014      Revised:  14 December 2014      Accepted manuscript online: 
PACS:  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  82.33.Pt (Solid state chemistry)  
  82.60.Qr (Thermodynamics of nanoparticles)  
  05.70.Np (Interface and surface thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41371249, 41201223, and 41101223) and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2015C059).
Corresponding Authors:  Yang Gang, Li Hang     E-mail:  theobiochem@gmail.com;lihangswu@163.com
About author:  82.65.+r; 82.33.Pt; 82.60.Qr; 05.70.Np

Cite this article: 

Liu Xin-Min (刘新敏), Yang Gang (杨刚), Li Hang (李航), Tian Rui (田锐), Li Rui (李睿), Ding Wu-Quan (丁武泉), Yuan Ruo (袁若) A theoretical exploration of the influencing factors for surface potential 2015 Chin. Phys. B 24 068202

[1] Somasundaran P, Markovic B, Krishnakumar S and Yu X 1997 Handbook of Surface and Colloid Chemistry (New York: CRC Press)
[2] Ghosal S 2002 Anal. Chem. 74 4198
[3] Zhang X, Grimes B A, Wang J C, Lacki K M and Liapis A I 2004 J. Colloid Interface Sci. 273 22
[4] Li H, Qing C L, Wei S Q and Jiang X J 2004 J. Colloid Interface Sci. 275 172
[5] Hou J and Li H 2009 Soil Sci. Soc. Am. J. 73 1658
[6] Kallay N, Preočanin T and Ivšić T 2007 J. Colloid Interface Sci. 309 21
[7] Li H, Wei S, Qing C and Yang J 2003 J. Colloid Interface Sci. 258 40
[8] Begum S 2003 J. Colloid Interface Sci. 261 399
[9] Zarzycki P, Rosso K M, Chatman S, Preočanin T, Kallay N and Piasecki W 1997 Phys. Rev. Lett. 79 435
[11] Tong Z Y, Zhu Y J and Tong C H 2014 Chin. Phys. B 23 038202
[12] Peng B and Yu Y X 2009 J. Chem. Phys. 131 134703
[13] Wang K, Yu Y X and Gao G H 2008 J. Chem. Phys. 128 185101
[14] Sun Z L, Kang Y S, Kang Y M and Song J M 2014 Chin. Phys. B 23 126401
[15] Yu Y X, Wu J Z and Gao G H 2004 J. Chem. Phys. 120 7223
[16] Kunz W, Henle J and Ninham B 2004 Curr. Opin. Colloid Interface Sci. 9 19
[17] Levin Y, Santos A P D and Diehl A 2009 Phys. Rev. Lett. 103 257802
[18] Nostro P L and Ninham B W 2012 Chem. Rev. 112 2286
[19] Kunz W, Lo Nostro P and Ninham B 2004 Curr. Opin. Colloid Interface Sci. 9 1
[20] Fujimoto S and Yu Y X 2010 Chin. Phys. B 19 088701
[21] Yu Y X and Fujimoto S 2013 Sci. China: Chem. 56 1735
[22] Lu J F, Yu Y X and Li Y G 1993 Fluid Phase Equilib. 85 81
[23] dos Santos A P and Levin Y 2013 Faraday Discuss. 160 75
[24] Yu Y X, Gao G H and Li Y G 2000 Fluid Phase Equilib. 173 23
[25] Pashley R M, McGuiggan P M, Ninham B W, Brady J and Evans D F 1986 J. Phys. Chem. 90 1637
[26] Tsao Y H, Evans D F, Rand R P and Parsegian V A 1993 Langmuir 9 233
[27] Salis A, Cristina Pinna M, Bilaničová D, Monduzzi M, Nostro P L and Ninham B W 2006 J. Phys. Chem. B 110 2949
[28] Boström M, Craig V S J, Albion R, Williams D R M and Ninham B W 2003 J. Phys. Chem. B 107 2875
[29] Liu X, Li H, Du W, Tian R, Li R and Jiang X 2013 J. Phys. Chem. C 117 6245
[30] Parsons D F, Boström M, Nostro P L and Ninham B W 2011 Phys. Chem. Chem. Phys. 13 12352
[31] Li H, Hou J, Liu X and Wu L 2011 Soil Sci. Soc. Am. J. 75 2128
[32] Liu X, Li H, Li R, Tian R and Xu C 2013 Analyst 138 1122
[33] Levin Y 2002 Rep. Prog. Phys. 65 1577
[34] Patey G N 1980 J. Chem. Phys. 72 5763
[35] Liu X, Li H, Li R, Tian R and Xu C 2012 Commun. Theor. Phys. 58 437
[36] Liu X, Li H, Li R and Tian R 2013 Surf. Sci. 607 197
[37] Li H and Wu L S 2007 Soil Sci. Soc. Am. J. 71 1694
[38] Li H and Wu L S 2007 New J. Phys. 9 357
[39] Yokoyama H and Yamatera H 1975 Bull. Chem. Soc. Jpn. 48 1770
[40] Davies C W 1962 Ion Association (Washington D.C.: Butterworths)
[41] Liu X, Li H, Li R, Tian R and Hou J 2012 J. Soils Sed. 12 1019
[42] Boroudjerdi H, Kim Y W, Naji A, Netz R R, Schlagberger X and Serr A 2005 Phys. Rep. 416 129
[43] Bolt G H 1955 Soil Sci. 79 267
[44] Mullet M, Fievet P, Reggiani J C and Pagetti J 1997 J. Membr. Sci. 123 255
[45] Mao M, Fornasiero D, Ralston J, Smart R S C and Sobieraj S 1994 Colloids Surf. A 85 37
[46] Bowen W R and Mukhtar H 1993 Colloids Surf. A 81 93
[47] Smit W and Holten C L M 1980 J. Colloid Interface Sci. 78 1
[48] Barber J 1980 Biochim. Biophys. Acta Bioenerg. 594 253
[49] Kinraide T B and Wang P 2010 J. Exp. Bot. 61 2507
[50] Dobrzynska I, Skrzydlewska E and Figaszewski Z 2006 Bioelectrochem. 69 142
[51] Manning G S 1981 J. Phys. Chem. 85 1506
[52] Stellwagen E and Stellwagen N C 2003 Biophys. J. 84 1855
[53] Liu X, Li H, Li R, Xie D, Ni J and Wu L 2014 Sci. Rep. 4 5047
[54] Frydel D 2011 J. Chem. Phys. 134 234704
[55] Parsons D F and Ninham B W 2010 Langmuir 26 1816
[56] Parsons D F and Ninham B W 2010 Langmuir 26 6430
[57] Schwierz N, Horinek D and Netz R R 2010 Langmuir 26 7370
[58] Grahame D C 1950 J. Chem. Phys. 18 903
[59] Joshi R P, Qian J, Schoenbach K H and Schamiloglu E 2004 J. Appl. Phys. 96 3617
[60] Gavryushov S and Linse P 2003 J. Phys. Chem. B 107 7135
[61] Parsons D F and Ninham B W 2011 Colloids Surf. A 383 2
[62] Kosmulski M 2002 Langmuir 18 785
[63] Johnson S B, Scales P J and Healy T W 1999 Langmuir 15 2836
[64] Wang K, Yu Y X and Gao G H 2004 Phys. Rev. E 70 011912
[1] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[2] Electric potential distribution near nanocone arrays on metal substrates
Huang Xiao-Jing(黄晓菁) and You Rong-Yi(游荣义) . Chin. Phys. B, 2012, 21(5): 057802.
[3] Charge transfer and variation of potential distributions in the formation of 4, 4'-bipyridine molecular junction
Li Zong-Liang(李宗良), Zou Bin(邹斌), Yan Xun-Wang(闫循旺), and Wang Chuan-Kui(王传奎). Chin. Phys. B, 2007, 16(5): 1434-1439.
No Suggested Reading articles found!