Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 066401    DOI: 10.1088/1674-1056/24/6/066401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

Ye Peng-Cheng (叶鹏程), Pan Guang (潘光)
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering.
Keywords:  large cavitation number      sound attenuation intensity      bubbly liquids      linear acoustic wave  
Received:  18 October 2014      Revised:  19 November 2014      Accepted manuscript online: 
PACS:  64.70.fh (Boiling and bubble dynamics)  
  47.55.D- (Drops and bubbles)  
  43.25.+y (Nonlinear acoustics)  
  43.20.+g (General linear acoustics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279165 and 51479170) and the National Defense Basic Scientific Research Program of China (Grant No. B2720133014).
Corresponding Authors:  Ye Peng-Cheng, Pan Guang     E-mail:  ypc2008300718@163.com;panguang601@163.com
About author:  64.70.fh; 47.55.D-; 43.25.+y; 43.20.+g

Cite this article: 

Ye Peng-Cheng (叶鹏程), Pan Guang (潘光) Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number 2015 Chin. Phys. B 24 066401

[1] Hosangadi A, Ahuja V and Arunajatesan S 2001 ASME J. Fluids Eng. 123 331
[2] Schnerr G H and Sauer J 2001 Fourth International Conference on Multiphase Flow, 2001, New Orleans, USA
[3] Singhal A K, Athavale M M and Li H 2002 Fluids Eng. 124 617
[4] Zhu J, Liu T and Qiu J 2012 Computers & Fluids 57 52
[5] Chen X, Lu C and Li J 2011 J. Hydrodyn. Ser. B 23 730
[6] Li Z, Pourquie M and Van Terwisga T J C 2010 J. Hydrodyn. Ser. B 22 770
[7] Saranjam B 2013 Ocean Engineering 59 9
[8] Lindau J W, Kunz R F and Mulherin J M 2003 Fifth International Symposium on Cavitation, November 1-4, 2003, Osaka, Japan p. 124
[9] Park S and Rhee S H 2012 Computers & Fluids 70 73
[10] Chahine G L 2009 J. Hydrodyn. Ser. B 21 316
[11] Carstensen E L and Foldy L L 1947 J. Acous. Soc. Am. 19 481
[12] Wijngaarden L 1972 Ann. Rev. Fluid Mech. 4 369
[13] Commander K W 1989 J. Acoust. Soc. Am. 85 732
[14] Wang Y, Lin S Y and Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)
[15] Wang C H and Lin S Y 2008 Journal of Shaanxi Normal University 36 30 (in Chinese)
[16] Leroy V, Strybulevych A and Page J H 2008 J. Acoust. Soc. Am. 123 1931
[17] Louisnard O 2012 Ultrasonics Sonochemistry 19 56
[18] Yano T, Kanagawa T and Watanabe M 2013 Dynamics and Shock Waves (Berlin/Heidelberg: Springer) p. 107
[19] Ansys 2010 help 13.0 Turbulence
[20] Caflisch R E, Miksis M J and Papanicolaou G C 1985 J. Fluid Mech. 153 259
[21] Gibson F W 1970 J. Acoust. Soc. Am. 48 1195
[1] Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Guo Zhi-Rong(郭志荣), Yang Zeng-Qiang(杨增强), Yin Bao-Xiang(殷保祥), and Sun Mao-Zhu(孙茂珠). Chin. Phys. B, 2010, 19(11): 115203.
No Suggested Reading articles found!