Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 065206    DOI: 10.1088/1674-1056/24/6/065206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Evolution of magnetically rotating arc into large area arc plasma

Wang Cheng (王城)a, Li Wan-Wan (李皖皖)a, Zhang Xiao-Ning (张晓宁)a, Zha Jun (査俊)b, Xia Wei-Dong (夏维东)a
a Department of Thermal Science and Energy Engineering, University of Science and Technology, Hefei 230027, China;
b Hefei General Machinery Research Institute, Hefei 230027, China
Abstract  

An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper.

Keywords:  magnetically rotating arc      diffuse arc      dispersed arc  
Received:  16 October 2014      Revised:  12 January 2015      Accepted manuscript online: 
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.70.Ds (Electric and magnetic measurements)  
  52.50.Dg (Plasma sources)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).

Corresponding Authors:  Xia Wei-Dong     E-mail:  xiawd@ustc.edu.cn
About author:  52.80.Mg; 52.70.Ds; 52.50.Dg

Cite this article: 

Wang Cheng (王城), Li Wan-Wan (李皖皖), Zhang Xiao-Ning (张晓宁), Zha Jun (査俊), Xia Wei-Dong (夏维东) Evolution of magnetically rotating arc into large area arc plasma 2015 Chin. Phys. B 24 065206

[1] Pfender E 1999 Plasma Chem. Plasma Proc. 19 1
[2] Fauchais P and Vardelle A 1997 IEEEE Trans. Plasma Sci. 25 1258
[3] Young R M and Pfender E 1985 Plasma Chem. Plasma Proc. 5 1
[4] Kawajiri K, Sato T and Nishiyama H 2002 Surface and Coatings Technology 171 134
[5] Harry J E and Hobson L 1978 IOP Science 12 357
[6] Slinkman D and Sacks R 1990 Appl. Spectrosc. 44 76
[7] Slinkman D and Sacks R 1990 Appl. Spectrosc. 44 83
[8] Xia W D, Li L C, Zhao Y H, Ma Q, Du B H, Chen Q and Cheng L 2006 Appl. Phys. Lett. 88 211501
[9] Zhou H L, Li L C, Cheng L, Zhou Z P, Bai B and Xia W D 2008 IEEE Trans. Plasma Sci. 36 1084
[10] Xia W D, Zhou H L, Zhou Z P and Bai B 1048 IEEE Trans. Plasma Sci. 36 1048
[11] Li L C, Xia W D, Zhou H L, Zhou Z P and Bai B 2008 Eur. Phys. J. D 47 75
[12] Baeva M and Uhrlandt D 2011 Plasma Sources Sci. T 20 035008
[13] Zha J, Zhang X N, Xu Z, Wang C, Du B H and Xia W D 2013 IEEE Trans. Plasma Sci. 41 601
[14] Li L C, Chen Q, Zhou H L and Xia W D 2008 IEEE Trans. Plasma Sci. 36 1080.
[15] Mayo R F and Davis D D 1962 American Rocket Society Reprint 62 2453
[16] Harry J E and Guile A E 1968 P I Electron. Eng. 115 1019
[17] Murphree D L and Carter R P 1975 J. Appl. Phys. 46 1834
[18] Murphree D L and Carter R P 1970 Phys. Fluids 13 1747
[19] Liu B, Fujita Y, Tanaka S I and Inaba T 2008 IEEE Trans. Plasma Sci. 36 1076
[20] Iwao T, Beppu T, Ishikawa S and Inaba T 2004 J. Phys. D: Appl. Phys. 37 1158
[1] Production of a large area diffuse arc plasma with multiple cathode
Cheng Wang(王城), Hai-Chao Cui(崔海超), Wan-Wan Li(李皖皖), Meng-Ran Liao(廖梦然), Wei-Luo Xia(夏维珞), Wei-Dong Xia(夏维东). Chin. Phys. B, 2017, 26(2): 025202.
No Suggested Reading articles found!