Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057503    DOI: 10.1088/1674-1056/24/5/057503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Room temperature ferromagnetism in un-doped amorphous HfO2 nano-helix arrays

Xie Qian (谢谦), Wang Wei-Peng (王炜鹏), Xie Zheng (谢拯), Zhan Peng (战鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军)
The Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  Amorphous HfO2 nano-helix arrays with different screw pitches were fabricated by the glancing angle deposition technique. Room temperature ferromagnetism was achieved in this undoped amorphous HfO2 nanostructure, which is attributed to singly charged oxygen vacancies. The different magnetic behavior and photoluminescence in flat film and nano-helix arrays originate from the distinction of defect components. This study could facilitate the understanding of ferromagnetism origin in undoped HfO2, it also suggests a possible way to alter the intrinsic defects in amorphous HfO2.
Keywords:  hafnium oxide      amorphous nanostructure      oxygen vacancy      room temperature ferromagnetism  
Received:  04 September 2014      Revised:  18 December 2014      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  68.35.bj (Amorphous semiconductors, glasses)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51372135 and 61176003) and the Tsinghua University Initiative Scientific Research Program, China.
Corresponding Authors:  Zhang Zheng-Jun     E-mail:  zjzhang@tsinghua.edu.cn
About author:  75.75.-c; 75.75.Cd; 68.55.Ln; 68.35.bj

Cite this article: 

Xie Qian (谢谦), Wang Wei-Peng (王炜鹏), Xie Zheng (谢拯), Zhan Peng (战鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军) Room temperature ferromagnetism in un-doped amorphous HfO2 nano-helix arrays 2015 Chin. Phys. B 24 057503

[1] Venkatesan M, Fitzgerald C B and Coey J M D 2004 Nature 430 630
[2] Coey J M D 2006 Current Opinion in Solid State and Materials Science 10 83
[3] Ogale S B 2010 Adv. Mater. 22 3125
[4] Zhao L, Lu P F, Yu Z Y, Ma S J, Ding L and Liu J T 2012 Chin. Phys. B 21 097103
[5] Rao R, Kundaliya D C, Ogale S B, Fu L F, Welz S J, Browning N D, Zaitsev V, Varughese B, Cardoso C A, Urtin A C, Dhar S, Shinde S R, Venkatesan T, Lofland S E and Schwarz S A 2006 Appl. Phys. Lett. 88 142505
[6] Hadacek N, Nosov A, Ranno L, Strobel P and Galéra R M 2007 J. Phys.: Condens. Matter 19 486206
[7] Abraham D W, Frank M M and Guha S 2005 Appl. Phys. Lett. 87 252502
[8] Salzer R, Spemann D, Esquinazi P, Höhne R, Setzer A, Schindler K, Schmidt H and Butz T 2007 J. Magn. Magn. Mater. 317 53
[9] Esquinazi P, Hergert W, Spemann D, Setzer A and Ernst A 2013 IEEE T. Magn. 49 4668
[10] Roberts K G, Varela M, Rashkeev S, Pantelides S T, Pennycook S J and Krishnan K M 2008 Phys. Rev. B 78 014409
[11] Mohanty P, Mishra N C, Choudhary R J, Banerjee A, Shripathi T, Lalla N P, Annapoorni S and Rath C 2012 J. Phys. D: Appl. Phys. 45 325301
[12] Pemmaraju C D and Sanvito S 2005 Phys. Rev. Lett. 94 217205
[13] Coey J M D, Venkatesan M, Stamenov P, Fitzgerald C B and Dorneles L S 2005 Phys. Rev. B 72 024450
[14] Modreanu M, Sancho-Parramon J, Durand O, Servet B, Stchakovsky M, Eypert C, Naudin C, Knowles A, Bridou F and Ravet M F 2006 Appl. Surf. Sci. 253 328
[15] Zhan P, Wang W P, Xie Q, Li Z C and Zhang Z J 2012 Appl. Phys. Lett. 111 103524
[16] Ning S, Zhan P, Wang W P, Li Z C and Zhang Z J 2014 Chin. Phys. B 23 127503
[17] Osorio-Guillén J, Lany S, Barabash S V and Zunger A 2006 Phys. Rev. Lett. 96 107203
[18] Hilden L R and Morris K R 2004 J. Pharm. Sci 93 3
[19] Hawkeye M M and Brett M J 2007 J. Vac. Sci. Technol. A 25 1317
[20] Zhou Q, Li Z C, Yang Y and Zhang Z J 2008 J. Phys. D: Appl. Phys. 41 152007
[21] Scopel W L, Silva A J and Fazzio A 2008 Phys. Rev. B 77 172101
[22] Ni J, Zhu Y, Zhou Q and Zhang Z J 2008 J. Am. Ceram. Soc. 91 3458
[23] Young N O and Kowal J 1959 Nature 183 104
[24] Tirosh E and Markovich G 2007 Adv. Mater. 19 2608
[25] Yang G, Gao D, Zhang J, Zhang J, Shi Z and Xue D 2011 J. Phys. Chem. C 115 16814
[26] Fan J, Liu H, Kuang Q, Gao B, Ma F and Hao Y 2012 Microelectron. Reliab. 52 1043
[27] Santara B, Giri P K, Imakita K and Fuji M 2013 Nanoscale 5 5476
[28] Zhuang J, Weng S, Dai W, Liu P and Liu Q 2012 J. Phys. Chem. C 116 25354
[29] Wang S Q and Mayer J W 1988 J. Appl. Phys. 64 4711
[30] Tan T, Liu Z, Lu H, Liu W and Yan F 2009 Vacuum 83 1155
[31] Zhan N, Poon M C, Kok C W, Ng K L and Wong H 2003 J. Electrochem. Soc. 150 F200
[32] Ohtsu N, Tsuchiya B, Oku M, Shikama T and Wagatsuma K 2007 Appl. Surf. Sci. 253 6844
[33] Tan T T, Liu Z T and Li Y Y 2011 Chin. Phys. Lett. 28 086803
[34] Wilk G D, Wallace R M and Anthony J M 2000 J. Appl. Phys. 87 484
[35] Qiu X, Howe J Y, Meyer H M III, Tuncer E and Paranthaman M P 2011 Appl. Surf. Sci. 257 4075
[36] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[37] Jaffe J E, Droubay T C and Chambers S A 2005 J. Appl. Phys. 97 073908
[38] Kiisk V, Lange S, Utt K, Tätte T, Mändar H and Sildos I 2010 Physica B 405 758
[39] Ni J, Zhou Q, Li Z C and Zhang Z J 2008 Appl. Phys. Lett. 93 011905
[40] Ciapponi A, Wagner F R, Palmier S, Natoli J Y and Gallais L 2009 J. Lumin. 129 1786
[41] Pejaković D A 2010 J. Lumin. 130 1048
[42] Foster A S, Gejo F L, Shluger A L and Nieminen R M 2002 Phys. Rev. B 65 174117
[43] Kirm M, Aarik J, Jürgens M and Sildos I 2005 Nucl. Instrum. Meth. A 537 251
[44] Chuang S H, Lin H C and Chen C H 2012 J. Alloy. Compd. 534 42
[45] Umezawa N, Shiraishi K, Ohno T, Boero M, Watanabe H, Chikyow T, Torii K, Yamabe K, Yamada K and Nara Y 2006 Physica B 376 392
[46] Gavartin J L, Munoz Ramo D, Shluger A L, Bersuker G and Lee B H 2006 Appl. Phys. Lett. 89 082908
[47] Estes M J and Moddel G 1996 Phys. Rev. B 54 14633
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[3] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[4] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[5] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[6] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[7] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[8] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[9] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[10] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[11] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[12] Intrinsic luminescence centers in γ- and θ-alumina nanoparticles
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani. Chin. Phys. B, 2017, 26(3): 036101.
[13] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[14] First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2
Wei Zhang(张玮), Jie Huang(黄洁). Chin. Phys. B, 2016, 25(5): 057103.
[15] Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments
Han-Lu Ma(马寒露), Zhong-Qiang Wang(王中强), Hai-Yang Xu(徐海阳), Lei Zhang(张磊), Xiao-Ning Zhao(赵晓宁), Man-Shu Han(韩曼舒), Jian-Gang Ma(马剑钢), Yi-Chun Liu(刘益春). Chin. Phys. B, 2016, 25(12): 127303.
No Suggested Reading articles found!