Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 053401    DOI: 10.1088/1674-1056/24/5/053401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T

Chi Xiao-Lin (迟晓琳)a, Zhao Jin-Feng (赵金峰)a b, Zhang Yong-Jia (张永嘉)a, Ma Feng-Cai (马凤才)a, Li Yong-Qing (李永庆)a b
a Department of Physics, Liaoning University, Shenyang 110036, China;
b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  

Among many kinds of ways to study the properties of atom and molecule collision, the quasi-classical trajectory (QCT) method is an effective one to investigate the molecular reaction dynamics. QCT calculations have been carried out to investigate the stereodynamics of the reactions F+H2/HD/HT→FH+H/D/T, which proceed on the lowest-lying electronic states of the FH2 system based on the potential energy surface (PES) of the 12A' FH2 ground state. Although the QCT method cannot describe all quantum effects in the process of the reaction, it has unique advantages when facing a three-atoms system or complicated polyatomic systems. Differential cross sections (DCSs) and three angle distribution functions P(θr), P(ør), P(θr, ør) on the PES at the collision of 2.74~kcal/mol have been investigated. The isotope effect becomes more obvious with the reagent molecule H2 turning into HD and HT. P(θr, ør), as the joint probability density function of both polar angles θr and ør, can reflect the properties of three-dimensional dynamic more intuitively.

Keywords:  quasi-calssical trajectory      stereodynamics      potential energy surface      isotope effect  
Received:  28 October 2014      Revised:  17 November 2014      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  34.50.-s (Scattering of atoms and molecules)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11474141), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Grant No. 2014-1685), the Scientific Research Foundation for the Doctor of Liaoning University, the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil, and the China Postdoctoral Science Foundation (Grant No. 2014M550158).

Corresponding Authors:  Li Yong-Qing     E-mail:  yqli@lnu.edu.cn
About author:  34.50.Lf; 34.50.-s; 31.15.xv

Cite this article: 

Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆) Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T 2015 Chin. Phys. B 24 053401

[1] Cardoen W, Simons J and Gdanitz R J 2006 Int. J. Quantum Chem. 106 1516
[2] Berry M J 1973 J. Chem. Phys. 59 6229
[3] Perry D S and Polanyi J C 1976 Chem. Phys. 12 419
[4] Neumark D M, Wodtke A M, Robinson G N, Hayden C C, Shobatake R, Sparks R K, Schafer T P and Lee Y T 1985 J. Chem. Phys. 82 3045
[5] Neumark D M, Wodtke A M, Robinson G N, Hayden C C and Lee Y T 1985 J. Chem. Phys. 82 3067
[6] Faubel M, Rusin L, Schlemmer S, Sondermann F, Tappe U and Toennies J P 1994 J. Chem. Phys. 101 2106
[7] Faubel M, Martinez-Haya B, Rusin L Y, Tappe U and Toennies J P 1995 Chem. Phys. Lett. 232 197
[8] Faubel M, Martinez-Haya B, Rusin L Y, Tappe U and Toennies J P 1995 Phys. Chem. 188 197
[9] Weaver A and Neumark D M 1991 Faraday Discuss 91 5
[10] Bradforth S E, Arnold D W, Neumark D M and Manolopoulos D M 1993 J. Chem. Phys. 99 6345
[11] Faubel M, Schlemmer S, Sondermann F and Toennies J P 1991 J. Chem. Phys. 94 4676
[12] Aoiz F J, Bañares L, Herrero V J and Sáez Rábanos V 2008 J. Chem. Phys. 129 024305
[13] Aldegunde J and Alvarino J M 2006 J. Chem. Phys. 125 133104
[14] Bender C F, ONeill S V, Pearson P K and Schaefer III H F 1972 Science 176 1412
[15] Vincenzo A, Simonetta C and Andrea S 2004 J. Chem. Phys. 121 11675
[16] Vincenzo A and Simonetta C 2005 J. Chem. Phys. 123 054314
[17] Knowles P J, Stark K and Werner H J 1991 Chem. Phys. Lett. 185 555
[18] Lynch G C, Steckler R, Schwenke D W, Varandas A J C and Truhlar D G 1991 J. Chem. Phys. 94 7150
[19] Stark K and Werner H J 1996 J. Chem. Phys. 104 6515
[20] Aquilanti V, Candori R, Cappelletti D, Luzzatti E and Pirani F 1990 Chem. Phys. 145 293
[21] Manolopoulos D E, Stark K, Werner H J and Neumark D M 1993 Science 262 1852
[22] Aoiz F J, Herrero V J, Stark K and Werner H J 1994 Chem. Phys. Lett. 223 215
[23] Aoiz F J, Banares L, Herrero V J, Saez Rabanos V, Stark K and Werner H J 1995 J. Chem. Phys. 102 9248
[24] Efrat R, Sipora H K and Avigdor P 1995 J. Chem. Phys. 99 16523
[25] Aoiz F J, Banares L, Herrero V J and Stark K 1996 Chem. Phys. Lett. 254 341
[26] Fazio D D, Cavalli S, Aquilanti V, Buchacheko A A and Tscherbul T V 2007 J. Phys. Chem. A 111 12538
[27] Han J D, Manke G C and Heaven C 2002 Proc. SPIE 4631 225
[28] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 102 10204
[29] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[30] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[31] Li X H, Wang M S, Ilaria Pino, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[32] Li Y Q, Zhao J F, Zhang Y J, Chi X L, Ding Y and Ma F C 2014 Chin. Phys. B 23 123401
[33] Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[34] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[35] Liu L S and Shi Y 2011 Chin. Phys. B 20 013404
[36] Wei Q 2013 Chin. Phys. Lett. 30 073101
[37] Zhai H S and Zhou P W 2012 Chin. Phys. Lett. 29 063401
[38] Wei Q 2014 Chin. Phys. B 23 023401
[39] Wang Y P, Zhao M Y and Yao S H 2013 Chin. Phys. B 22 128201
[40] Zhang L, Liu Y F and Xu G L 2013 Acta Phys. Sin. 62 223402 (in Chinese)
[41] Chen X P and Li X L 2013 Chin. Phys. Lett. 30 064702
[42] Yao C X, Duan Z X and Qiu M H 2014 Acta Phys. Sin. 63 063402 (in Chinese)
[43] Li Y Q, Song Y Z and Varandas A J C 2015 Eur. Phys. J. D 69 22
[44] Mielke S L, Lynch G C, Truhlar D G and Schwenke D W 1993 Chem. Phys. Lett. 213 10
[45] Aoiz F J, Herrero V J, Nogueira M M and Rabanos V S 1993 Chem. Phys. Lett. 204 359
[46] Aoiz F J, Banares L, Herrero V J and Rabanos V S 1994 Chem. Phys. Lett. 218 422
[47] Aoiz F J, Banares L, Herrero V J and Rabanos V S 1994 Chem. Phys. 187 227
[48] Aquilanti V, Cavalli S, Fazio D D, Volpi A, Aguilar A, Gimenez X and Luca J M 2002 Phys. Chem. Chem. Phys. 4 401
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[3] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[4] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[5] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[6] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[7] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[8] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[9] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[10] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[11] Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation
Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2016, 25(5): 053101.
[12] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[13] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong (米鸿), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅), Pan Xiao-Yin (潘孝胤). Chin. Phys. B, 2015, 24(9): 098201.
[14] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(6): 063101.
[15] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
No Suggested Reading articles found!