Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 039501    DOI: 10.1088/1674-1056/24/3/039501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock

Liu Pei-Liang (刘培亮)a b c, Huang Yao (黄垚)a b, Bian Wu (边武)a b c, Shao Hu (邵虎)a b c, Qian Yuan (钱源)a b c, Guan Hua (管桦)a b, Tang Li-Yan (唐丽艳)a b, Gao Ke-Lin (高克林)a b
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The magic wavelengths for different Zeeman components are measured based on the 40Ca+ optical clock. The dynamic dipole polarizability of a non-zero angular moment level has correlation with the polarization direction of the linearly polarized laser beam, and we show that the four hyperfine structure levels of 4s1/2, m = ± 1/2 and 3d5/2, m = ± 1/2 for 40Ca+ have the same dynamic dipole polarizability at the magic wavelength and a certain polarization direction. In addition, the existence of a specific direction of polarization may provide a new idea for improving the precision of magic wavelength measurement in experiment.

Keywords:  optical clock      dynamic dipole polarizability      linearly polarized laser  
Received:  07 November 2014      Revised:  21 November 2014      Accepted manuscript online: 
PACS:  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  76.70.Fz (Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)  
  29.27.Hj (Polarized beams)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB821301), the National Natural Science Foundation of China (Grant Nos. 11474318, 91336211, and 11034009), and the Chinese Academy of Sciences.

Corresponding Authors:  Gao Ke-Lin     E-mail:  klgao@wipm.ac.cn

Cite this article: 

Liu Pei-Liang (刘培亮), Huang Yao (黄垚), Bian Wu (边武), Shao Hu (邵虎), Qian Yuan (钱源), Guan Hua (管桦), Tang Li-Yan (唐丽艳), Gao Ke-Lin (高克林) Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock 2015 Chin. Phys. B 24 039501

[1] Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
[2] Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V and Yudin V I 2008 Phys. Rev. Lett. 100 103002
[3] Yi L, Mejri S, McFerran J J, Le Coq Y and Bize S 2011 Phys. Rev. Lett. 106 073005
[4] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B 43 202001
[5] Topcu T and Derevianko A 2014 Phys. Rev. A 89 023411
[6] Mitroy J and Tang L Y 2013 Phys. Rev. A 88 052515
[7] Safronova M S, Safronova U I and Clark C W 2013 Phys. Rev. A 87 052504
[8] Zhou X J, Xu X, Chen X Z and Chen J B 2010 Phys. Rev. A 81 012115
[9] Yu G H, Zhong J Q, Li R B, Wang J and Zhan M S 2011 Chin. Phys. Lett. 28 073201
[10] Ye J, Kimble H J and Katori H 2008 Science 320 1734
[11] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2014 arXiv:1409.2576
[12] Roberts B M, Dzuba V A and Flambaum V V 2013 Phys. Rev. A 87 054502
[13] Sahoo B K, Wansbeek L W, Jungmann K and Timmermans R G E 2009 Phys. Rev. A 79 052512
[14] Zang X R, Zhang T G and Chen J B 2012 Chin. Phys. Lett. 29 090601
[15] Takamoto M, Katori H, Marmo S I, Ovsiannikov V D and Palćhikov V G 2009 Phys. Rev. Lett. 102 063002
[16] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
[17] Park C Y, Park H Y, Yu D H, Lee W K, Park S E, Kim E B, Lee S K, Cho J W, Yoon T H, Mun J, Park S J, Kwon T Y and Lee S B 2013 Metrologia 50 119
[18] Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
[19] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[20] Margolis H S 2009 J. Phys. B 42 154017
[21] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[22] Tang L Y, Yan Z C, Shi T Y, and Babb J F 2014 Phys. Rev. A 90 012524
[23] Nandy D K, Singh Y, Shah B P and Sahoo B K 2012 Phys. Rev. A 86 052517
[24] Dzuba1 V A and Derevianko A 2010 J. Phys. B 43 074011
[25] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
[26] Arora B and Sahoo B K 2012 Phys. Rev. A 86 033416
[27] Lepers M, Wyart J F and Dulieu1 O 2014 Phys. Rev. A 89 022505
[28] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H and Gao K L 2014 Chin. Phys. Lett. 31 113702
[29] Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503
[30] Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
[31] Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X and Gao K 2011 Opt. Commun. 284 217
[32] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[1] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[2] Dynamic polarizabilities of the clock states of Al+
Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2022, 31(8): 083102.
[3] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[4] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[5] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[6] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[7] Cold atom clocks and their applications in precision measurements
Shao-Yang Dai(戴少阳), Fa-Song Zheng(郑发松), Kun Liu(刘昆), Wei-Liang Chen(陈伟亮), Yi-Ge Lin(林弋戈), Tian-Chu Li(李天初), and Fang Fang(房芳). Chin. Phys. B, 2021, 30(1): 013701.
[8] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[9] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[10] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[11] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[12] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[13] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[14] Experiments on trapping ytterbium atoms in optical lattices
Zhou Min (周敏), Chen Ning (陈宁), Zhang Xiao-Hang (张晓航), Huang Liang-Yu (黄良玉), Yao Mao-Fei (姚茂飞), Tian Jie (田洁), Gao Qi (高琪), Jiang Hai-Ling (蒋海灵), Tang Hai-Yao (唐海瑶), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(10): 103701.
[15] A novel orthogonally linearly polarized Nd:YVO4 laser
Yan Xing-Peng(闫兴鹏), Liu Qiang(柳强), Chen Hai-Long(陈海龙), Fu Xing(付星), Gong Ma-Li(巩马理), and Wang Dong-Sheng(王东生). Chin. Phys. B, 2010, 19(8): 084202.
No Suggested Reading articles found!