Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017501    DOI: 10.1088/1674-1056/24/1/017501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method

Lu Chun-Lin (卢春林)a, Zhang Lin (张林)a b, Zhang Yun-Wang (张云望)a, Liu Shen-Ye (刘慎业)a, Mei Yang (梅杨)c
a Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
b Jointment Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010, China;
c School of Physics and Electronic Engineering, Mianyang Normal University, Mianyang 621000, China
Abstract  Ternary metal chalcogenide semiconductor Ag8SnS6, which is an efficient photocatalyst under visible light radiation, is studied by plane-wave pseudopotential density functional theory. After geometry optimization, the electronic and optical properties are studied. A scissor operator value of 0.81 eV is introduced to overcome the underestimation of the calculation band gaps. The contribution of different bands is analyzed by virtue of total and partial density of states. Furthermore, in order to understand the optical properties of Ag8SnS6, the dielectric function, absorption coefficient, and refractive index are also performed in the energy range from 0 to 11 eV. The absorption spectrum indicates that Ag8SnS6 has a good absorbency in visible light area. Surface energies and work functions of (4 11), (413), (211), and (112) orientations have been calculated. These results reveal the reason for an outstanding photocatalytic activity of Ag8SnS6.
Keywords:  density functional theory      Ag8SnS6      optical properties      surface energy  
Received:  14 April 2014      Revised:  04 September 2014      Accepted manuscript online: 
PACS:  75.15.Mb  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  65.40.gh (Work functions)  
Fund: Project supported by the Science and Technology Development Foundation of China (Grant Nos. 2012A0302015 and 2012B0302050).
Corresponding Authors:  Zhang Lin     E-mail:  zhlmy@sina.com

Cite this article: 

Lu Chun-Lin (卢春林), Zhang Lin (张林), Zhang Yun-Wang (张云望), Liu Shen-Ye (刘慎业), Mei Yang (梅杨) Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method 2015 Chin. Phys. B 24 017501

[1] Forgacs E, Cserhati T and Oros G 2004 Environ. Int. 30 953
[2] Kudo A and Miseki Y 2009 Chem. Soc. Rev. 38 253
[3] Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
[4] Fujishima A, Rao T N and Tryk D A 2000 J. Photoch. Photobio. C 1 1
[5] Afzaal M, Malik M A and O'Brien P 2007 New J. Chem. 31 2029
[6] Hu J S, Ren L L, Guo Y G, Liang H P, Cao A M, Wan L J and Bai C L 2005 Angew. Chem. 117 1295
[7] Silva L A, Ryu S Y, Choi J, Choi W and Hoffmann M R 2008 J. Phys. Chem. C 112 12069
[8] Osipishi I, Butsko N I, Gasii B I and Zhezhnic I D 1972 Sov. Phys. Semicond. 974
[9] Hu W Q, Shi Y F and Wu L M 2012 Cryst. Growth Des. 12 3458
[10] Wang N 1978 Neues Jahrbuch Für Mineralogie, Monatshefte 269
[11] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[13] Yousaf M, Saeed M A, Isa A R M, Aliabad H A R and Sahar M R 2013 Chin. Phys. Lett. 30 077402
[14] Yangthaisong A 2013 Chin. Phys. Lett. 30 077101
[15] Brik M G 2013 J. Phys. Condens. Matter 25 345802
[16] Shojaei A R, Nourbakhsh Z, Vaez A and Dehghani M 2013 Chin. Phys. B 22 127102
[17] Singh-Miller N E and Marzari N 2009 Phys. Rev. B 80 235407
[18] Zhang J M, Ma F and Xu K W 2004 Chin. Phys. 13 1082
[19] He M C and Zhao J 2013 Chin. Phys. B 22 016802
[20] Li R, Zhong Y, Huang C, Tao X and Ouyang Y 2013 Physica B 422 51
[21] Rák Z, Ewing R C and Becker U 2013 Surf. Sci. 608 180
[22] Liang H N, Ma C L, Du F, Cui Q L and Zou G T 2013 Chin. Phys. B 22 016103
[23] Liu L, Wei J J, An X Y, Wang X M, Liu H N and Wu W D 2011 Chin. Phys. B 20 106201
[24] Sun B and Zhang P 2008 Chin. Phys. B 17 1364
[25] Sesion Jr P D, Henriques J M, Barboza C A, Albuquerque E L, Freire V N and Caetano E W S 2010 J. Phys. Condens. Matter. 22 435801
[26] Luque A and Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (2nd edn.) (Hoboken: John Wiley & Sons, Inc.) p. 82
[27] Chen X, Shen S, Guo L and Mao S S 2010 Chem. Rev. 110 6503
[28] Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P and Wu W D 2014 Chin. Phys. B 23 037104
[29] Zhang L Y, Yan J L, Zhang Y J and Li T 2012 Chin. Phys. B 21 067102
[30] Liu Q J, Liu Z T, Che X S, Feng L P and Tian H 2011 Solid State Sci. 13 2177
[31] Yu J, Lin X, Wang J, Chen J and Huang W 2009 Appl. Surf. Sci. 255 9032
[32] Kittel C 1986 Introduction to Solid State Physics (8th edn.) (Hoboken: John Wiley & Sons, Inc.) p. 494
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!