Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010503    DOI: 10.1088/1674-1056/24/1/010503
GENERAL Prev   Next  

Robust output feedback cruise control for high-speed train movement with uncertain parameters

Li Shu-Kai (李树凯), Yang Li-Xing (杨立兴), Li Ke-Ping (李克平)
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
Abstract  In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov's stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods.
Keywords:  high-speed train      cruise control      uncertain parameters      linear matrix inequalities  
Received:  19 June 2014      Revised:  27 August 2014      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  07.05.Dz (Control systems)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2014JBM150).
Corresponding Authors:  Li Shu-Kai     E-mail:  shkli@bjtu.edu.cn

Cite this article: 

Li Shu-Kai (李树凯), Yang Li-Xing (杨立兴), Li Ke-Ping (李克平) Robust output feedback cruise control for high-speed train movement with uncertain parameters 2015 Chin. Phys. B 24 010503

[1] Yang C D and Sun Y P 1999 Proceedings of the 1999 in American Control Conference 2200
[2] Dong H R, Ning B, Cai B G and Hou Z S 2010 IEEE Circ. Syst. Mag. 10 6
[3] Yang L X, Li X and Li K P 2011 Commun. Theor. Phys. 56 411
[4] Wang M, Zeng J W, Qian Y S, Li W J, Yang F and Jia X X 2012 Chin. Phys. B 21 070502
[5] Su Y H, Cao C X, Xu Y and Wu C 2013 Chin. Phys. B 22 120501
[6] Cao C X, Xu Y and Li K P 2013 Chin. Phys. B 22 060504
[7] Howlett P 1996 Automatica 32 519
[8] Khmelnitsky E 2000 IEEE Trans. Automat. Contr. 45 1257
[9] Liu R and Golovitcher I M 2003 Transp. Res. Part A 37 917
[10] Yang L X, Li F, Gao Z Y and Li K P 2010 Chin. Phys. B 19 100510
[11] Ye J J and Li K P 2013 Chin. Phys. B 22 050205
[12] Ye J J, Li K P and Jin X M 2014 Acta Phys. Sin. 63 070202 (in Chinese)
[13] Yang C D and Sun Y P 2001 Int. J. Control 74 905
[14] Astolfi A and Menini L 2002 Proceedings of the 2002 in American Control Conference 549
[15] Dong H R, Gao S G, Ning B and Li L 2013 Neural Comput. Appl. 22 321
[16] Song Q, Song Y D, Tang T and Ning B 2011 IEEE Trans. Intell. Transp. 12 1116
[17] Song Q and Song Y D 2011 IEEE Trans. Neural Netw. 22 2250
[18] Zhuan X and Xia X 2008 Automatica 44 242
[19] Davis W J 1926 The Tractive Resistance of Electric Locomotives and Cars (General Electric)
[20] Boyd S, Elghaoui L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[1] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[2] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[3] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[4] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping (刘平). Chin. Phys. B, 2013, 22(7): 070501.
[5] Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays
P. Balasubramaniam, M. Kalpana, and R. Rakkiyappan . Chin. Phys. B, 2012, 21(4): 048402.
[6] Complete synchronization of double-delayed R?ssler systems with uncertain parameters
Sang Jin-Yu(桑金玉), Yang Ji(杨吉), and Yue Li-Juan(岳立娟) . Chin. Phys. B, 2011, 20(8): 080507.
[7] Fuzzy modeling and impulsive control of hyperchaotic Lü system
Zhang Xiao-Hong(张小洪) and Li Dong(李东). Chin. Phys. B, 2009, 18(5): 1774-1779.
[8] Adaptive synchronization of uncertain Liu system via nonlinear input
Hu Jia(胡佳) and Zhang Qun-Jiao(张群娇) . Chin. Phys. B, 2008, 17(2): 503-506.
[9] The effect of ACC vehicles to mixed traffic flow consisting of manual and ACC vehicles
Xie Dong-Fan (谢东繁), Gao Zi-You (高自友), Zhao Xiao-Mei (赵小梅). Chin. Phys. B, 2008, 17(12): 4440-4445.
[10] Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays
Wu Wei(吴炜) and Cui Bao-Tong (崔宝同). Chin. Phys. B, 2007, 16(7): 1889-1896.
[11] Adaptive passive equivalence of uncertain Lü system
Qi Dong-Lian(齐冬莲). Chin. Phys. B, 2006, 15(8): 1715-1718.
[12] H tracking control of coupled spatiotemporal chaos based on fuzzy models
Dou Chun-Xia (窦春霞). Chin. Phys. B, 2005, 14(7): 1347-1351.
[13] $H_{\infty}$ tracking control of coupled spatiotemporal chaos with parametric uncertainties based on fuzzy observers
Dou Chun-Xia (窦春霞), Zhang Shu-Qing (张淑清). Chin. Phys. B, 2005, 14(5): 902-907.
[14] Global adaptive synchronization of chaotic systems with uncertain parameters
Li Zhi (李智), Han Chong-Zhao (韩崇昭). Chin. Phys. B, 2002, 11(1): 9-11.
[15] ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS
Li Zhi (李智), Han Chong-zhao (韩崇昭). Chin. Phys. B, 2001, 10(6): 494-496.
No Suggested Reading articles found!