Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017503    DOI: 10.1088/1674-1056/24/1/017503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-pressure synthesis, characterization, and equation of state of double perovskite Sr2CoFeO6

Pan Yue-Wu (潘跃武)a, Zhu Pin-Wen (朱品文)b, Wang Xin (王欣)b
a Mathematics and Physical Sciences Technology, Xuzhou Institute of Technology, Xuzhou 221018, China;
b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Double perovskite oxide Sr2CoFeO6 (SCFO) has been obtained using a high-pressure and high-temperature (HPHT) synthesis method. Valence states of Fe and Co and their distributions in SCFO were examined with X-ray photoelectron spectroscopy. The electric transport behavior of SCFO showed a semiconductor behavior that can be well described by Mott's law for variable-range hopping conduction. The structural stability of SCFO was investigated at pressures up to 31 GPa with no pressure-induced phase transition found. Bulk modulus B0 was determined to be 163(2) GPa by fitting the pressure-volume data to the Birch-Murnaghan equation of state.
Keywords:  double perovskite oxide      electric properties      high pressure  
Received:  19 July 2014      Revised:  22 September 2014      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  61.05.cp (X-ray diffraction)  
  64.60.-i (General studies of phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172194 and 51172091), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0240), and Jilin Province Science and Technology Development Program, China (Grant No. 20130101023JC).
Corresponding Authors:  Wang Xin     E-mail:  xin_wang@jlu.edu.cn

Cite this article: 

Pan Yue-Wu (潘跃武), Zhu Pin-Wen (朱品文), Wang Xin (王欣) High-pressure synthesis, characterization, and equation of state of double perovskite Sr2CoFeO6 2015 Chin. Phys. B 24 017503

[1] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[2] DeMarco M, Blackstead H A, Dow J D, Wu M K, Chen D Y, Chien F Z, Haka M, Toorongian S and Fridmann J 2000 Phys. Rev. B 62 14301
[3] Kato H, Okuda T, Okimoto Y, Tomioka Y, Oikawa K, Kamiyama T and Tokura Y 2004 Phys. Rev. B 69 184412
[4] Phatak R, Krishnan K, Sali S K, Das A and Nigam A K 2013 J. Magn. Magn. Mater. 344 129
[5] Murthy J K and Venimadhav A 2013 J. Appl. Phys. 113 163906
[6] Pradheesh R, Nair H S, Sankaranarayanan V and Sethupathi K 2012 Eur. Phys. J. B 85 260
[7] Martinez-Lope M J, Alonso J A, Casais M T and Fernandez-Diaz M T 2002 Eur. J. Inorg. Chem. 9 2463
[8] Rammeh N, Ehrenberg H, Fuess H and Cheikkh-Rouhou A 2006 Phys. Status Solidi C 3 3225
[9] Hinatsu Y and Doi Y 2006 J. Solid State Chem. 179 2079
[10] Pradheesh R, Nair H S, Kumar C M N, Lamsal J, Nirmala R, Santhosh P N, Yelon W B, Malik S K, Sankaranarayanan V and Sethupathi K 2012 J. Appl. Phys. 111 053905
[11] Viola M C, Martínez-Lope M J, Alonso J A, Velasco P, Martínez J L, Pedregosa J C, Carbonio R E and Fernández-Díaz M T 2002 Chem. Mater. 14 812
[12] Bezdicka P, Fournés L, Wattiaux A, Grenier J C and Pouchard M 1994 Solid State Commun. 91 501
[13] Nomura K, Rykov A I, Nemudry A P and Mitsui T 2007 Thin Solid Films 515 8645
[14] Bannikov V V, Shein I R, Kozhevnikov V L and Ivanovskii A L 2008 J. Struc. Chem. 49 781
[15] Faik A, Gateshki M, Igartua J M, Pizarro J L, Insausti M, Kaindl R and Grzechnik A 2008 J. Solid State Chem. 181 1759
[16] Augsburger M S, Viola M C, Pedregosa J C, Munoz A, Alonso J A and Carbonio R E 2005 J. Mater. Chem. 15 993
[17] Ortega-San Martin L, Chapman J P, Lezama L, Sanchez-Marcos J, Rodriguez-Fernandez J, Isabel Arriortua M and Rojo T 2005 J. Mater. Chem. 15 183
[18] Bull C L, Gleeson D and Knight K S 2003 J. Phys.: Condens. Matter 15 4927
[19] Retuerto M, Martínez-Lope M J, García-Hernández M, Fernández-Díaz M T and Alonso J A 2008 Eur. J. Inorg. Chem. 4 588
[20] Gateshki M, Igartua J M and Hernandez-Bocanegra E 2003 J. Phys.: Condens Matter 15 6199
[21] Viola M C, Martinez-Lope M J, Alonso J A, Martinez J L, De Paoli J M, Pagola S, Pedregosa J C, Fernandez-Diaz M T and Carbonio R E 2003 Chem. Mater. 15 1655
[22] Ivanov S A, Nordblad P, Mathieu R, Tellgren R and Ritter C 2010 Dalton Trans. 39 11136
[23] Manoun B, Igartua J M, Gateshki M and Saxena S K 2008 J. Mol. Struct. 888 244
[24] Lufaso M W, Gemmill W R, Mugavero S J Ⅲ, Lee Y, Vogt T and Loye H C 2006 J. Solid State Chem. 179 3556
[25] Wu H P, Qian Y, Tan W S, Xiao C Y, Deng K M and Lu R F 2011 Appl. Phys. Lett. 99 123116
[26] Yang Y, Jiang Y S, Wang Y W and Sun Y B 2007 J. Mol. Catal. A: Chem. 270 56
[27] Wang P, Yao L, Wang M and Wu W 2000 J. Alloys Compd. 311 53
[28] Viret M, Ranno L and Coey J M D 1997 Phys. Rev. B 55 8067
[29] Coey J M D, Viret M and Ranno L 1995 Phys. Rev. Lett. 75 3910
[30] De Teresa J M, Ibarra M R, Blasco J, Garcia J, Marquina C and Algarabel P A 1996 Phys. Rev. B 54 1187
[31] Birch F 1947 Phys. Rev. 71 809
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[10] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[15] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
No Suggested Reading articles found!