Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017402    DOI: 10.1088/1674-1056/24/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Field-dependent resistive transitions in Yba2Cu3O7-δ thin films: Influence of the pseudogap on vortex dynamics

S H Naqib, R S Islam
Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh
Abstract  The nature of resistive transition of high-quality crystalline thin films of Yba2Cu3O7-δ has been studied under magnetic fields (H) applied along the c direction over a wide range of doped holes, p, in the CuO2 planes. The field- and temperature-dependent in-plane resistivity, ρab(T,H), has been analyzed within the thermally assisted flux-flow (TAFF) formalism. The flux activation energy, U(T,H), has been extracted from this analysis. The low-T part of the ρab(T,H) data can be described by an activation energy having the functional form of U(T,H) = (1-t)m(H0/H), where t = T/Tc (reduced temperature), and H0 is a field scale that primarily determines the magnitude of U(T,H). The temperature exponent, m, shows a systematic variation with p, whereas the field exponent, β, is insensitive to the p values and is close to unity. The H0, on the other hand, changes rapidly as p is varied. U(T,H) is linked to the pinning potential and consequently on the superconducting condensation energy. Since the normal state pseudogap directly affects superconducting condensation energy, a clear correspondence between H0 and the PG energy scale, εg, is found. Possible implications of these results are discussed.
Keywords:  Y123 superconductors      thermally assisted flux-flow model      activation energy      pseudogap  
Received:  05 June 2014      Revised:  25 November 2014      Accepted manuscript online: 
PACS:  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.72.Ek (Electron-doped)  
  74.25.Dw (Superconductivity phase diagrams)  
Corresponding Authors:  S H Naqib     E-mail:  salehnaqib@yahoo.com

Cite this article: 

S H Naqib, R S Islam Field-dependent resistive transitions in Yba2Cu3O7-δ thin films: Influence of the pseudogap on vortex dynamics 2015 Chin. Phys. B 24 017402

[1] Tinkham M 1988 Phys. Rev. Lett. 61 1658
[2] Palstra T T M, Batlogg B, Schneemeyer L F and Waszczak J V 1988 Phys. Rev. Lett. 61 1662
[3] Dias F T, Viera V N, Rodrigues P Jr, Obradors X, Pureur P and Schaf J 2008 Phys. Rev. B 77 134503
[4] Budhani R C, Welch D O, Suenaga M and Sabatini R L 1990 Phys. Rev. Lett. 64 1666
[5] Xu X J, Fu L, Wang L B, Zhang Y H, Fang J, Cao X W, Li K B and Sekine H 1999 Phys. Rev. B 59 608
[6] Zhang Y Z, Wen H H and Wang Z 2006 Phys. Rev. B 74 144521
[7] Zhu S, Christen D K, Klabunde C E, Thompson J R, Jones E C, Feenstra R, Lowndes D H and Norton D P 1992 Phys. Rev. B 46 5576
[8] Cao XW, Fang J,Wang Z H, Xu X J,Wang R L and Li H C 1997 Phys. Rev. B 56 8341
[9] Liu S L 2008 J. Supercond. Nov. Magn. 21 199
[10] Liu S L, Shao H M and Wang Z H 2007 Supercond. Sci. Technol. 20 444
[11] Semwal A, Strickland N M, Bubendorfer A, Naqib S H, Goh S K and Williams G V M 2004 Supercond. Sci. Technol. 17 S506
[12] Naqib S H and Semwal A 2005 Physica C 425 14
[13] Sarkar M R H and Naqib S H 2012 J. Sci. Res. 4 286
[14] Sarkar M R H and Naqib S H 2013 arXiv:1311.3373
[15] Andersson M, Rydh A and Rapp Ö 2001 Phys. Rev. B 63 184511
[16] Rydh A, Rapp Ö and Andersson M 1999 Phys. Rev. Lett. 83 1850
[17] Ogale S B, Kwon C, Rajeswari M, Choughule D D, Greene R L and Venkatesan 1995 Phys. Rev. B 51 11753
[18] Tallon J L, Willams G V M and Loram J W 2000 Physica C 338 9
[19] Obertelli S D, Cooper J R and Tallon J L 1992 Phys. Rev. B 46 14928
[20] Naqib S H, Chakalov R A and Cooper J R 2004 Physica C 407 73
[21] Naqib S H 2003 (Ph.D. Thesis) (UK: University of Cambridge) (unpublished)
[22] Cirillo C, Guarino A, Nigro A and Carmine A 2009 Phys. Rev. B 79 144524
[23] Yeshurun Y and Malozemoff A P 1988 Phys. Rev. Lett. 60 2202
[24] Schilling A, Fisher R A, Phillips N E, Welp U, Dasgupta D, Kwok W K and Crabtree G W 1996 Nature 382 791
[25] Welp U, Fendrich J A, Kwok W K, Crabtree G W and Veal B W 1996 Phys. Rev. Lett. 76 4809
[26] Naqib S H, Cooper J R, Tallon J L, Islam R S and Chakalov R A 2005 Phys. Rev. B 71 054502
[27] Corson J, Mallozzi R, Orenstein J, Eckstein J N and Bozovic I 1999 Nature 398 221
[28] Bilbro L S, Veladés A R, Logvenov G, Pelleg O, Bozovic I and Armitage N P 2011 Nature 7 298
[29] Naqib S H, Cooper J R, Tallon J L and Panagopoulos C 2003 Physica C 387 365
[30] Naqib S H, Cooper J R, Islam R S and Tallon J L 2005 Phys. Rev. B 71 184510
[31] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[32] Naqib S H, Cooper J R and Islam R S 2007 Physica C 460 756
[33] Liu S L, Wu G J, Xu X B, Wu J and Shao H M 2005 Solid State Commun. 133 615
[34] Chin C C and Morishita T 1993 Physica C 207 37
[35] Naqib S H and Islam R S 2008 Supercond. Sci. Technol. 21 105017
[36] Zheng D N, Campbell A M, Johnson J D, Cooper J R, Blunt F J, Porch A and Freeman P A 1994 Phys. Rev. B 49 1417
[37] Tallon J L, Storey J G and Loram J W 2011 Phys. Rev. B 83 092502
[38] Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A and Howard C 2003 Rev. Mod. Phys. 75 1201
[39] Naqib S H 2012 Physica C 476 10
[40] Naqib S H and Islam R S 2014 J. Supercond. Nov. Magn. 27 337
[1] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[2] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[3] A short review of the recent progresses in the study of the cuprate superconductivity
Tao Li(李涛). Chin. Phys. B, 2021, 30(10): 100508.
[4] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[5] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[6] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[7] Physical implications of activation energy derived from temperature dependent photoluminescence of InGaN-based materials
Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Xiang Li(李翔), Wei Liu(刘炜), Feng Liang(梁锋), Li-Qun Zhang(张立群), Hui Yang(杨 辉), Wen-Jie Wang(王文杰), Mo Li(李沫). Chin. Phys. B, 2017, 26(7): 077101.
[8] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[9] Electron trapping properties at HfO2/SiO2 interface, studied by Kelvin probe force microscopy and theoretical analysis
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(8): 087701.
[10] Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline
Ru Xing(邢茹), Su-Lei Wan(万素磊), Wen-Qing Wang(王文清), Lin Zheng(郑琳), Xiang Jin(金香), Min Zhou(周敏), Yi Lu(鲁毅), Jian-Jun Zhao(赵建军). Chin. Phys. B, 2016, 25(4): 047601.
[11] Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation
Liu Zheng-Guang (刘争光), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(11): 110208.
[12] In situ electrical resistance and activation energy of solid C60 under high pressure
Yang Jie (杨洁), Liu Cai-Long (刘才龙), Gao Chun-Xiao (高春晓). Chin. Phys. B, 2013, 22(9): 096202.
[13] Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
Zhang Jie (张洁), Yuan Chao (袁超), Wang Jun-Qiao (王俊俏), Liang Er-Jun (梁二军), Chao Ming-Ju (晁明举). Chin. Phys. B, 2013, 22(8): 087201.
[14] Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p–Si and Al/Bi4Ti3O12/p–Si structures by using the admittance spectroscopy method
Mert Yíldírím, Perihan Durmuş, Şemsettin Altíndal. Chin. Phys. B, 2013, 22(10): 108502.
[15] The electrical properties of sulfur-implanted cubic boron nitride thin films
Deng Jin-Xiang(邓金祥), Qin Yang(秦扬), Kong Le(孔乐), Yang Xue-Liang(杨学良), Li Ting(李廷), Zhao Wei-Ping(赵卫平), and Yang Ping(杨萍) . Chin. Phys. B, 2012, 21(4): 047202.
No Suggested Reading articles found!