Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120308    DOI: 10.1088/1674-1056/23/12/120308
GENERAL Prev   Next  

Afterpulsing characteristics of InGaAs/InP single photon avalanche diodes

Ma Hai-Qiang (马海强), Yang Jian-Hui (杨建会), Wei Ke-Jin (韦克金), Li Rui-Xue (李瑞雪), Zhu Wu (朱武)
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  InGaAs/InP single photon avalanche diodes (SPADs) are more and more available in many research fields. They are affected by afterpulsing which leads to a poor single photon detection probability. We present an InGaAs/InP avalanche photodiode with an active quenching circuit on an application specific integrated circuit (ASIC). It can quench the avalanche rapidly and then reduce the afterpulse rate. Also this quenching circuit can operate in both free-running and gated modes. Furthermore, a new technique is introduced to characterize the influence of the higher order of afterpulses, which uses a program running on a field programmable gate array (FPGA) integrated circuit.
Keywords:  single photon detection      active quenching      afterpulse      quantum key distribution  
Received:  28 June 2014      Revised:  18 September 2014      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61178010), the Fundamental Research Funds for the Central Universities, China (Grant No. bupt 2014TS01), the Fund of State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China (Grant No. 201318), and the National Program for Basic Research of China (Grant No. 2010CB923202).
Corresponding Authors:  Ma Hai-Qiang     E-mail:  hqma@bupt.edu.cn

Cite this article: 

Ma Hai-Qiang (马海强), Yang Jian-Hui (杨建会), Wei Ke-Jin (韦克金), Li Rui-Xue (李瑞雪), Zhu Wu (朱武) Afterpulsing characteristics of InGaAs/InP single photon avalanche diodes 2014 Chin. Phys. B 23 120308

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Levine B F and Bethea C G 1985 Appl. Phys. Lett. 46 333
[3] Levine B F, Bethea C G and Campbell J 1985 Electron. Lett. 21 194
[4] Wegmuller M, Scholder F and Gisin N 2004 J. Lightw. Technol. 22 390
[5] Stellari F, Zappa F, Cova S, Porta C and Tsang J C 2001 IEEE Trans. Electron Dev. 48 2830
[6] Li L Q and Davis L M 1993 Rev. Sci. Instrum. 64 1524
[7] Miller A J, Nam S W, Martinis J M and Sergienko A V 2003 Appl. Phys. Lett. 83 791
[8] Goltsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
[9] Zhang C and Jiao R Z 2012 Chin. Phys. B 21 120306
[10] Itzler M A, Jiang X, Entwistle M, Onat B M and Slomkowski K 2010 Proc. SPIE 7681 76810V
[11] Hiskett P A, Buller G S, Loudon A Y, Smith J M, Gontijo I, Walker A C, Townsend P D and Robertson M J 2000 Appl. Opt. 39 6818
[12] Ribordy G, Gautier J D, Zbinden H and GisinN 1998 Appl. Opt. 37 2272
[13] Yoshizawa A, Kaji R and Tsuchida H 2004 Appl. Phys. Lett. 84 3606
[14] Wei Z J, Li K Z, Zhou P, Wang J D, Liao C J, Guo J P, Liang R S and Liu S H 2008 Chin. Phys. B 17 4142
[15] Rarity J G, Wall T E, Ridley K D, Owens P C M and Tapster P R 2000 Appl. Opt. 39 6746
[16] Cova S, Ghioni M, Lacaita A L, Samori C and Zappa F 1996 Appl. Opt. 35 1956
[17] Cova S, Ghioni M, Lotito A, Rech I and Zappa F 2004 J. Mod. Opt. 51 1267
[18] ThewR T, Stucki D, Gautier J D, Zbinden H and Rochas A 2007 Appl. Phys. Lett. 91 201114
[19] Rochas A, Guillaume-Gentil C, Gautier J D, Pauchard A, Ribordy G, Zbinden H, LeblebiciY and Monat L 2007 Proc. SPIE 6583 65830F
[20] Stucki D, Ribordy G, Stefanov A, Zbinden H, Rarity J G and Wall T 2001 J. Mod. Opt. 48 1967
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[9] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[10] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[11] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!