Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117202    DOI: 10.1088/1674-1056/23/11/117202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling

Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Bulk n-type Bi2Te3 single crystals with optimized chemical composition were successfully prepared by a high temperature-gradient directional solidification method. We investigate the influence of alloy microstructure, chemical composition, and growth orientation on the thermoelectric transport properties. The results show that the composition of single-crystal Bi2Te3 alloy, along the c axis direction, could be slightly tuned by changing the growth rate of the crystal. At a rate of 18 mm/h, the formed Bi2Te3 crystal exhibits good thermoelectric properties. At 300 K, a maximum Seebeck coefficient of -245 uV/K and an electrical conductivity of 5.6×104 S/m are acquired. The optimal power factor is obtained as 3.3× 10-3 W/K2m, with a figure of merit of 0.74. It can be attributed to the increased tellurium allocation in the Bi2Te3 alloys, as verified well by the density functional theory calculations.
Keywords:  thermoelectric property      directional solidification      Bi2Te3      density functional theory  
Received:  10 July 2014      Revised:  07 August 2014      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  81.30.Fb (Solidification)  
  74.25.F- (Transport properties)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51074127) and the Research Fund of the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University, China (Grant No. SKLSP201010).
Corresponding Authors:  Li Shuang-Ming     E-mail:  lsm@nwpu.edu.cn

Cite this article: 

Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志) Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling 2014 Chin. Phys. B 23 117202

[1] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[2] Hamdou B, Kimling J, Dorn A, Pippel E, Rostek R, Woias P and Nielsch K 2013 Adv. Mater. 25 239
[3] Min Y, Roh J W, Yang H, Park M, Kim S, Hwang S, Lee S M, Lee K H and Jeong U 2013 Adv. Mater. 25 1425
[4] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[5] Heinz N A, Ikeda T and Snyder G J 2012 Acta Mater. 60 4461
[6] Wang G, Zhu X G, Sun Y Y, et al. 2011 Adv. Mater. 2929
[7] Rowe D M 1995 CRC Handbook of Thermoelectrics (Boca Raton, Florida: CRC press) pp. 216-218
[8] Nolas G S, Sharp J and Goldsmid J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp. 59-87
[9] Cosgrove G J, McHugh J P and Tiller W A 1961 J. Appl. Phys. 32 621
[10] Shen J J, Hu L P, Zhu T J and Zhao X B 2011 Appl. Phys. Lett. 99 124102
[11] Kim D H, Kim C, Heo S H and Kim H Y 2011 Acta Mater. 59 405
[12] Ni H L, Zhu T J and Zhao X B 2005 Mater. Sci. Eng. B 117 119
[13] Miura S, Sato Y, Fukuda K, Nishimura K and Ikeda K 2000 Mater. Sci. Eng. A 277 244
[14] Nassary M M, Shaban H T and El-Sadek M S 2009 Mater. Chem. Phys. 113 385
[15] Yamashita O and Tomiyoshi S 2003 J. Appl. Phys. 93 368
[16] Zou H L, Rowe D M and Min G 2001 J. Cryst. Growth 222 82
[17] Ha H P, Hyun D B, Byun J Y and Oh Y J 2002 J. Appl. Phys. 37 4691
[18] Feng S K, Li S M, Luo Q Y and Fu H Z 2011 Adv. Mater. Res. 197 1109
[19] Fleurial J P, Gailliard L, Triboulet R, Scherrer H and Scherrer S 1988 J. Phys. Chem. Solids 49 1237
[20] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[21] Paolo G, Stefano B, Nicola B, et al. 2009 J. Phys.: Condens. Matter 21 395502
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Liu D C and Nocedal J 1989 Math. Program. 45 503
[25] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[26] Dantzig J A and Rappaz M 2009 Solidification (Switzerland: EPFL Press) p. 305
[27] Chitroub M, Scherrer S and Scherrer H 2000 J. Phys. Chem. Solid. 61 1693
[28] Ainsworth L 1956 P. Phys. Soc. B 69 606
[29] Stefanescu D M 2008 Science and Engineering of Casting Solidification (New York: Springer) p. 137
[30] Scherrer H and Scherrer S 2006 Thermoelectrics Handbook: Macro to Nano (CRC Press: Taylor & Francis Group) p. 16
[31] Stern F 1980 Phys. Rev. Lett. 44 1469
[32] Vining C B 1991 J. Appl. Phys. 69 331
[33] Sootsman J R, Kong H J, Uher C, D'Angelo J J, Wu C I, Hogan T P, Caillat T and Kanatzidis M G 2008 Angew. Chem. 120 8746
[34] Ramu A T, Cassels L E, Hackman N H, Lu H, Zide J M O and Bowers J E 2010 J. Appl. Phys. 107 083707
[35] Pichanusakorn P and Bandaru P R 2009 Appl. Phys. Lett. 94 223108
[36] Wang S Y, Tan G J, Xie W J, Zheng G, Li H, Yang J H and Tang X F 2012 J. Mater. Chem. 22 20943
[37] Satterthwaite C B and Ure R W 1957 Phy. Rev. 108 1164
[38] Takashiri M, Miyazaki K, Tanaka S, Kurosaki J, Nagai D and Tsukamoto H 2008 J. Appl. Phys. 104 084302
[39] Chernatynskiy A and Phillpot S R 2013 Curr. Opin. Solid State Mater. Sci. 17 1
[40] Qiu B and Ruan X L 2009 Phys. Rev. B 80 165203
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!