Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127804    DOI: 10.1088/1674-1056/23/12/127804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature dependence of the photoluminescence of MnS/ZnS core–shell quantum dots

Fang Dai-Feng (房岱峰)a, Ding Xing (丁星)b, Dai Ru-Cheng (代如成)c, Zhao Zhi (赵智)a, Wang Zhong-Ping (王中平)c, Zhang Zeng-Ming (张增明)c
a Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China;
b Physics Department, Anhui University, Hefei 230601, China;
c Center of Physical Experiments, University of Science and Technology of China, Hefei 230026, China
Abstract  

The temperature dependence of the photoluminescence (PL) from MnS/ZnS core–shell quantum dots is investigated in a temperature range of 8 K–300 K. The orange emission from the 4T16A1 transition of Mn2+ ions and the blue emission related to the trapped surface state are observed in the MnS/ZnS core–shell quantum dots. As the temperature increases, the orange emission is shifted toward a shorter wavelength while the blue emission is shifted towards the longer wavelength. Both the orange and blue emissions reduce their intensities with the increase of temperature but the blue emission is quenched faster. The temperature-dependent luminescence intensities of the two emissions are well explained by the thermal quenching theory.

Keywords:  MnS/ZnS      quantum dots      temperature      photoluminescence  
Received:  03 June 2014      Revised:  07 August 2014      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.Et (II-VI semiconductors)  
  78.67.Hc (Quantum dots)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304300, 21002097, 11074232, and 11274288), the National Basic Research Program of China (Grant Nos. 2011CB932801 and 2012CB933702), the Fund from the Ministry of Education of China (Grant No. 20123402110034), the Fundamental Research Funds for the Central Universities (Grant No. WK2030420002), and the Anhui Provincial Natural Science Foundation, China (Grant No. 1308085QA06).

Corresponding Authors:  Dai Ru-Cheng     E-mail:  dairc@ustc.edu.cn

Cite this article: 

Fang Dai-Feng (房岱峰), Ding Xing (丁星), Dai Ru-Cheng (代如成), Zhao Zhi (赵智), Wang Zhong-Ping (王中平), Zhang Zeng-Ming (张增明) Temperature dependence of the photoluminescence of MnS/ZnS core–shell quantum dots 2014 Chin. Phys. B 23 127804

[1]Zheng S W, He M, Li S T and Zhang Y 2014 Chin. Phys. B 23 087101
[2]Xia Y J, Guang Z S and He T 2014 Chin. Phys. B 23 087701
[3]Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 117901
[4]Chandra V K, Chandra B P and Jha P 2013 Appl. Phys. Lett. 103 161113
[5]Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y and Golberg D 2009 Adv. Mater. 21 2034
[6]Ma L, Jiang K, Liu X T and Chen W 2014 J. Appl. Phys. 115 103104
[7]He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D and Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)
[8]Wood V, Halpert J E, Panzer M J, Bawendi M G and Bulovic V 2009 Nano Lett. 9 2367
[9]Alivisatos A P 1996 J. Phys. Chem. 100 13226
[10]Yang H and Holloway P H 2004 Adv. Funct. Mater. 14 152
[11]Yang H, Holloway P H, Cunningham G and Schanze K S 2004 J. Chem. Phys. 121 10233
[12]Karar N, Chander H and Shivaprasad S M 2004 Appl. Phys. Lett. 85 5058
[13]Hattori Y, Isobe T, Takahashi H and Itoh S 2005 J. Lumin. 113 69
[14]Jiang D X, Cao L X, Su G, Qu H and Sun D K 2007 Appl. Surf. Sci. 253 9330
[15]Quan Z W, Wang Z L, Yang P P, Lin J and Fang J Y 2007 Inorg. Chem. 46 1354
[16]Xie D N, Peng H S, Huang S H, You F T and Wang X H 2014 Acta Phys. Sin. 63 147801 (in Chinese)
[17]Zheng J J, Yuan X, Ikezawa M, Jing P T, Liu X Y, Zheng Z H, Kong X G, Zhao J L and Masumoto Y 2009 J. Phys. Chem. C 113 16969
[18]Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jing P T, Liu X Y, Li H B, Zhao J L and Masumoto Y 2010 J. Phys. Chem. C 114 15331
[19]Dai R C, Zheng J J, Zhang C C, Zhang Z M and Ding Z J 2011 J. Nanosci. Nanotechnol. 11 9883
[20]Peng W Q, Qu S C, Cong G W, Zhang X Q and Wang Z G 2005 J. Cryst. Growth 282 179
[21]Bol A A and Meijerink A 1998 Phys. Rev. B 58 R15997
[22]Sharma M, Singh S and Pandey O P 2010 J. Appl. Phys. 107 104319
[23]Bhargava R N, Gallagher D, Hong X and Nurmikko A 1994 Phys. Rev. Lett. 72 416
[24]Murase N, Jagannathan R, Kanematsu Y, Watanabe M, Kurita A, Hirata K, Yazawa T and Kushida T 1999 J. Phys. Chem. B 103 754
[25]Joly A G, Chen W, Roark J and Zhang J Z 2001 J. Nanosci. Nanotechnol. 1 295
[26]Su F H, Ma B S, Fang Z L, Ding K, Li G H and Chen W 2002 J. Phys.: Condens. Mater 14 12657
[27]Leroux M, Grandjean N, Beaumont B, Nataf G, Semond F, Massies J and Gibart P 1999 J. Appl. Phys. 86 3721
[28]Huang K and Rhys A 1950 Proc. R. Soc. London A 204 406
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[7] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[8] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[13] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[14] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[15] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
No Suggested Reading articles found!