Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124205    DOI: 10.1088/1674-1056/23/12/124205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Formation mechanism of bifurcation in mode-locked class-B laser

J. Jahanpanah, M. Rezazadeh, A. A. Rahdar
Physics Faculty, Kharazmi University, 49 Mofateh Ave, 15614, Tehran, Iran
Abstract  The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incoherently oscillating at the different longitudinal modes can be converted into a constructive one by using the mode-locking technique. Here, the Maxwell–Bloch equations of motion are solved for a three-mode class-B laser under the mode-locking conditions. The results indicate that the cavity oscillating modes are shifted by changing the laser pumping rate. On the other hand, the frequency components of cavity electric field simultaneously form the various bifurcations. These bifurcations satisfy the well-known mode-locking conditions as well. The atomic population inversion forms only one bifurcation, which is responsible for shaping the cavity electric field bifurcations.
Keywords:  bifurcation      multi-mode laser      mode-locking process      ultra-short pulse  
Received:  04 April 2014      Revised:  26 May 2014      Accepted manuscript online: 
PACS:  42.55.Ah (General laser theory)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Corresponding Authors:  J. Jahanpanah     E-mail:  jahanpanah@khu.ac.ir

Cite this article: 

J. Jahanpanah, M. Rezazadeh, A. A. Rahdar Formation mechanism of bifurcation in mode-locked class-B laser 2014 Chin. Phys. B 23 124205

[1]Jahanpanah J and Eslami H R 2013 Opt. Commun. 293 102
[2]Paunescu G, Hein J and Sauerbrey R 2004 Appl. Phys. B 79 555
[3]Milonni P W and Eberly J H 2010 Laser Physics (USA: John Wiley & Sons)
[4]Ho F T 1985 IEEE J. Quantum Electron. 21 1806
[5]Quinlan F, Gee S, Ozharar S and Delfyett P J 2006 Opt. Lett. 31 2870
[6]Jahanpanah J, Shavandi F and Soleimani A 2013 Laser Phys. 23 55005
[7]Li Y F, Herczfeld P R and Narducci L M 2006 IEEE J. Quantum Electron. 42 525
[8]Paschotta R 2004 Appl. Phys. B 79 163
[9]Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[10]Liu X M 2010 Phys. Rev. A 81 023811
[11]Font J, Vilaseca R, Prati F and Roldan E 2006 Opt. Commun. 261 336
[12]Nguyen B A and Mandel P 1996 Phys. Rev. A 54 1638
[13]Grishin M, Gulbinas V and Michailovas A 2009 Opt. Express 17 15700
[14]Habrusev T, Hegarty S P, Vladimirov A G, Pimenov A, Rachinskii D, Rebrova N, Viktorov E A and Huyet G 2012 Opt. Express 20 25572
[15]Kelleher B, Hegarty S P and Huyet G 2012 Phys. Rev. E 86 066206
[16]Zhukovsky S V, Chigrin D N, Lavrinenko A V and Kroha J 2007 Phys. Rev. Lett. 99 073902
[17]Hill M T, Dorren H J S, Vries T D, Leijtens X J M, Besten J H D, Smalbrugge B, Oei Y S, Binsma H, Khoe G D and Smit M K 2004 Nature 432 206
[18]Raburn M, Takenada M, Takeda K, Song X, Barton J S and Nakano Y 2006 IEEE Photon. Technol. Lett. 18 1421
[19]Gatare I, Sciamanna M, Nizette M, Thienpont H and Panajotov K 2009 Phys. Rev. E 80 026218
[20]Hurtado A, Quirce A, Valle A, Pesquera L and Adams M J 2010 Opt. Express 18 9423
[21]George Pan Z, Jiang S, Dagenais M, Morgan R A, Kojima K, Asom M T, Leibenguth R E, Guth G D and Focht M W 1993 Appl. Phys. Lett. 63 2999
[22]Heinricht P, Wetzel B, O'Brien S, Amann A and Osborne S 2011 Appl. Phys. Lett. 99 11104
[23]Erneux T, Viktorov E A, Kelleher B, Goulding D, Hegarty S P and Huyet G 2010 Opt. Lett. 35 937
[24]Kelleher B, Goulding D, Hegarty S P, Huyet G, Viktorov E A and Erneux T 2012 in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, (New York, USA Springer), Vol. 13, p. 1
[25]Ellis J D, Joo K, Buice E S and Spronck J 2010 Opt. Express 18 1373
[26]Jahanpanah J and Loudon R 1996 Phys. Rev. A 54 5210
[27]Siegman A E Laser 1986 (Mill Valley: University Science Books)
[28]Rezazadeh M 2013 "The frequency shift determination of three longitudinal modes in class-B lasers" (M. S. Dissertation) (Kharazmi University of Iran) (in Persian)
[29]Jahanpanah J and Rahdar A A 2012 Opt. Laser Technol. 44 2135
[30]Pisarchik A N, Kir'yanov A V, Barmenkov Y O and Jaimes-Reátegui R 2005 J. Opt. Soc. Am. B 22 2107
[31]Pisarchik A N, Barmenkov Y O and Kir'yanov A V 2003 IEEE J. Quantum Electron. 39 1567
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[9] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[10] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[11] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
[14] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[15] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
No Suggested Reading articles found!