Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124203    DOI: 10.1088/1674-1056/23/12/124203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reflection-type electromagnetically induced transparencyanalogue in terahertz metamaterials

Ding Chun-Feng (丁春峰)a b c, Zhang Ya-Ting (张雅婷)a b, Yao Jian-Quan (姚建铨)a b, Sun Chong-Ling (孙崇玲)d, Xu De-Gang (徐德刚)a b, Zhang Gui-Zhong (张贵忠)a b
a College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics,Tianjin University, Tianjin 300072, China;
b Key Laboratory of Opto-electronics Information Technology, Tianjin University, Tianjin 300072, China;
c Henan Key Laboratory of Laser and Opto-electric Information Technology, Zhenzhou 450052, China;
d State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Abstract  A reflection-type electromagnetically induced transparency (EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum (THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.
Keywords:  electromagnetically induced transparency (EIT)      metamaterial      multiple-reflection interference  
Received:  14 April 2014      Revised:  26 May 2014      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205096 and 61271066).
Corresponding Authors:  Yao Jian-Quan     E-mail:  jqyao@tju.edu.cn

Cite this article: 

Ding Chun-Feng (丁春峰), Zhang Ya-Ting (张雅婷), Yao Jian-Quan (姚建铨), Sun Chong-Ling (孙崇玲), Xu De-Gang (徐德刚), Zhang Gui-Zhong (张贵忠) Reflection-type electromagnetically induced transparencyanalogue in terahertz metamaterials 2014 Chin. Phys. B 23 124203

[1]Harris S E 1997 Phys. Today 50 36
[2]Zhang H J, Guo H J, Sun H, Li J P and Yin B Y 2013 Chin. Phys. B 22 104208
[3]Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[4]Papasimakis N, Fedotov V A, Zheludev N I and Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903
[5]Singh R, Rockstuh C, Lederer F and Zhang W L 2009 Phys. Rev. B 79 085111
[6]Tassin P, Zhang L, Koschny T, Economou E N and Soukoulis C M 2009 Phys. Rev. Lett. 102 053901
[7]Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[8]Chiam S Y, Singh R, Rockstuhl C Lederer F, Zhang W L and Bettiol A A 2009 Phys. Rev. B 80 153103
[9]Li Z Y, Ma Y F, Huang R, Singh R, Gu J Q, Tian Z, Han J G and Zhang W L 2011 Opt. Express 19 8912
[10]Ma Y F Li Z Y, Yang Y M, Huang R, Singh R, Zhang S, Gu J Q, Tian Z, Han J G and Zhang W L 2011 Opt. Mater. Express 1 391
[11]Papasimakis N, Fu Y H, Fedotov V A, Prosvirnin S L, Tsai D P and Zheludev N I 2009 Appl. Phys. Lett. 94 200902
[12]Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. B 80 035104
[13]Kekatpure R D, Barnard E S, Cai W and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
[14]Bian C L, Zhu J, Lu J W, Yan J L, Chen L Q, Wang Z B, Ou Z Y and Zhang W P 2013 Acta Phys. Sin. 62 174207 (in Chinese)
[15]Singh R, Al-Naib I A I, Yang Y P., Chowdhury D R, Cao W, Rockstuhl C, Ozaki T, Morandotti R and Zhang W L 2011 Appl. Phys. Lett. 99 201107
[16]Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G and Zhang W L 2012 Nat. Commun. 3 1151
[17]Zhu Z H, Yang X, Gu J Q, Jiang J, Yue W S, Tian Z, Tonouchi M, Han J G and Zhang W L 2013 Nanotechnology 24 214003
[18]Zhang X Q, Li Q, Cao W, Gu J Q, Singh R, Tian Z, Han J G and Zhang W L 2013 IEEE J. Sel. Top. Quant. 19 1
[19]Dong Z G, Li J Q, Shao J, Yu X Q, Wang Y K and Zhai Y 2013 Chin. Phys. B 22 044209
[20]Shen X P, Yang Y Zang Y Z, Gu J Q, Han J G, Zhang W L and Cui T J 2012 Appl. Phys. Lett. 101 154102
[21]Chen H T 2012 Opt. Express 20 7165
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[6] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[12] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[13] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[14] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!