Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124702    DOI: 10.1088/1674-1056/23/12/124702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Orientation-dependent morphological stability of grain boundary groove

Wang Li-Lin (王理林)a b, Lin Xin (林鑫)b, Wang Zhi-Jun (王志军)b, Huang Wei-Dong (黄卫东)b
a School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
b State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

Crystal orientation influences the morphological stability of solid–liquid interface during directional solidification of alloy, resulting in the variation of solidified microstructure. In this paper, the morphological evolution near grain boundary grooves (GBGs) with different crystal orientations in a dilute succinonitrile alloy under low temperature gradient and interface velocity is observed in situ. Under experimental conditions, the macroscopic solid–liquid interface is planar and keeps stable, while in GBGs there emerge protrusion and undulation. It is found that the morphological stability of GBG is dependent on crystal orientation. Specifically, for succinonitrile with a body-centered cubic crystal structure, GBGs around the <100> crystal orientation keep stable, while those apart from the <100> crystal orientation become unstable under the same conditions. So it is concluded that <100> crystal orientation favors the morphological stability of GBG.

Keywords:  morphological instability      grain boundaries      crystal orientation      solidification  
Received:  14 April 2014      Revised:  19 May 2014      Accepted manuscript online: 
PACS:  47.20.Hw (Morphological instability; phase changes)  
  61.72.Mm (Grain and twin boundaries)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.30.Fb (Solidification)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51271213), the National Basic Research Program of China (Grant No. 2011CB610402), China Postdoctoral Science Foundation (Grant No. 2013M542384), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20116102110016).

Corresponding Authors:  Lin Xin     E-mail:  xlin@nwpu.edu.cn

Cite this article: 

Wang Li-Lin (王理林), Lin Xin (林鑫), Wang Zhi-Jun (王志军), Huang Wei-Dong (黄卫东) Orientation-dependent morphological stability of grain boundary groove 2014 Chin. Phys. B 23 124702

[1]Mullins W W and Sekerka R F 1964 J. Appl. Phys. 35 444
[2]Coriell S R and Sekerka R F 1973 J. Cryst. Growth 19 90
[3]Coriell S R and Sekerya R F 1973 J. Cryst. Growth 19 285
[4]Yeh S Y, Chen C C and Lan C W 2011 J. Cryst. Growth 324 296
[5]Schaefer R J and Glicksman M E 1970 Metall. Trans. 1 1973
[6]Noël N, Jamgotchian H and Billia B 1998 J. Cryst. Growth 187 516
[7]Wang Z J, Wang J C and Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese)
[8]Coriell S R and Sekerka R F 1976 J. Cryst. Growth 34 157.
[9]Chen M W, Lan M, Yuan L, Wang Y Y, Wang Z D and Xu J J 2009 Chin. Phys. B 18 1691
[10]Wang Z J, Wang J C and Yang G C 2009 Phys. Rev. E 80 052603
[11]Wang Z J, Wang J C and Yang G C 2010 Chin. Phys. B 19 017305
[12]Wang L L, Wang Z J, Lin X, Wang M and Huang W D 2012 Chin. Phys. B 21 066801
[13]Wang L L, Wang X B, Wang H Y, Lin X and Huang W D 2012 Acta Phys. Sin. 61 148104 (in Chinese)
[14]Wang X B, Lin X, Wang L L, Bai B B, Wang M and Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese)
[15]Zhang Y P, Lin X, Wei L, Peng D J, Wang M and Huang W D 2013 Acta Phys. Sin. 62 178105 (in Chinese)
[16]Haxhimali T, Karma A, Gonzales F and Rappaz M 2006 Nat. Mater. 5 660
[17]Glicksman M E, Lowengrub J, Li S and Li X 2007 Journal of Metals 59 27
[18]Muller-krumbhaar H and Langer J S 1981 Acta Metall. 29 145
[1] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[4] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[5] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[8] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[9] High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review
Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建). Chin. Phys. B, 2018, 27(11): 118103.
[10] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[11] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[12] Structural origin underlying the effect of cooling rate on solidification point
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国). Chin. Phys. B, 2015, 24(11): 116101.
[13] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
[14] Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling
Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志). Chin. Phys. B, 2014, 23(11): 117202.
[15] Phase constitution and microstructure of Ce-Fe-B strip-casting alloy
Yan Chang-Jiang (严长江), Guo Shuai (郭帅), Chen Ren-Jie (陈仁杰), Lee Dong (李东), Yan A-Ru (闫阿儒). Chin. Phys. B, 2014, 23(10): 107501.
No Suggested Reading articles found!