Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124207    DOI: 10.1088/1674-1056/23/12/124207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation studies of multi-line line-of-sight tunable-diode-laserabsorption spectroscopy performance in measuring temperature probability distribution function

Zhang Guang-Le (张光乐), Liu Jian-Guo (刘建国), Kan Rui-Feng (阚瑞峰), Xu Zhen-Yu (许振宇)
Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics andFine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss–Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.
Keywords:  TDLAS      temperature non-uniformity      Gauss–Seidel iteration method      simulation  
Received:  29 March 2014      Revised:  30 May 2014      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  02.70.-c (Computational techniques; simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61108034) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151).
Corresponding Authors:  Liu Jian-Guo     E-mail:  jgliu@aiofm.ac.cn

Cite this article: 

Zhang Guang-Le (张光乐), Liu Jian-Guo (刘建国), Kan Rui-Feng (阚瑞峰), Xu Zhen-Yu (许振宇) Simulation studies of multi-line line-of-sight tunable-diode-laserabsorption spectroscopy performance in measuring temperature probability distribution function 2014 Chin. Phys. B 23 124207

[1]Hanson R K and Falcone P K 1978 Appl. Opt. 17 2477
[2]Webber M E, Wang J and Sanders S T 2000 P. Combust. Inst. 28 407
[3]Liu J T C, Rieker G B and Jeffries J B 2005 Appl. Opt. 44 6701
[4]Cai T D, Jia H, Wang G S, Chen W D and Gao X M 2009 Sensor Actuat. A: Phys. 152 5
[5]Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H and Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese)
[6]Ouyang X and Varghese P L 1989 Appl. Opt. 28 3979
[7]Wang J, Maiorov M, Jeffries J B, Garbuzov D Z, Connolly J C and Hanson R K 2000 Meas. Sci. Technol. 11 1576
[8]Palaghita T and Seitzman J M 2005 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July10-13, 2005, Tucson, USA, p. 3578
[9]Sanders S T, Wang J, Jeffries J B and Hanson R K 2001 Appl. Opt. 40 4404
[10]Liu X, Jeffries J B and Hanson R K 2007 AIAA Journal 45 411
[11]Yu X, Li F, Chen L H and Zhang X Y 2010 Acta Mech. Sin. 26 147
[12]Liu C, Xu L J and Cao Z 2013 Appl. Opt. 52 4827
[13]Li N, Yan J H, Wang F, Chi Y and Cen K J 2008 Spectrosc. Spect. Anal. 28 17082 (in Chinese)
[14]Zhou X, Jeffries J B and Hanson R K 2005 Appl. Phys. B 81 711
[15]Liu X 2006 "Line-of-sight Absorption of H2O Vapor: Gas Temperature Sensing in Uniform and Nonuniform Flows" (Ph. D. dissertation) (Stanford: Stanford University)
[16]Zhou X, Liu X, Jeffries J B and Hanson R K 2003 Meas. Sci. Technol. 14 1459
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!