Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117201    DOI: 10.1088/1674-1056/23/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Radio-frequency transistors from millimeter-scale graphene domains

Wei Zi-Jun (魏子钧)a, Fu Yun-Yi (傅云义)a, Liu Jing-Bo (刘竞博)b, Wang Zi-Dong (王紫东)a, Jia Yue-Hui (贾越辉)a c, Guo Jian (郭剑)a, Ren Li-Ming (任黎明)a, Chen Yuan-Fu (陈远富)b, Zhang Han (张酣)c, Huang Ru (黄如)a, Zhang Xing (张兴)a
a Institute of Microelectronics, Peking University, Beijing 100871, China;
b State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Scienceand Technology of China, Chengdu 610054, China;
c School of Physics, Peking University, Beijing 100871, China
Abstract  

Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent electronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum oscillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.

Keywords:  millimeter-scale graphene domain      radio-frequency transistor      cut-off frequency      maximum oscillation frequency  
Received:  25 March 2014      Revised:  05 May 2014      Accepted manuscript online: 
PACS:  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  72.80.Vp (Electronic transport in graphene)  
  87.50.S-  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00600, 2011CBA00601, and 2013CBA01604), the National Natural Science Foundation of China (Grant No. 60625403), and the National Science and Technology Major Project of China (Grant No. 2011ZX02707).

Corresponding Authors:  Fu Yun-Yi     E-mail:  yyfu@pku.edu.cn

Cite this article: 

Wei Zi-Jun (魏子钧), Fu Yun-Yi (傅云义), Liu Jing-Bo (刘竞博), Wang Zi-Dong (王紫东), Jia Yue-Hui (贾越辉), Guo Jian (郭剑), Ren Li-Ming (任黎明), Chen Yuan-Fu (陈远富), Zhang Han (张酣), Huang Ru (黄如), Zhang Xing (张兴) Radio-frequency transistors from millimeter-scale graphene domains 2014 Chin. Phys. B 23 117201

[1] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[2] Novoselov K S A, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 654
[4] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, Jessica L M, Taisuke O, Sergey A R, Jonas R, Eli R, Andreas K S, Daniel W, Heiko B W and Thomas S 2009 Nat. Mater. 8 203
[5] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[6] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[7] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan Y, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
[8] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[9] Wu Y Q, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W J, Xia F N, Avouris P and Lin Y M 2012 Nano Lett. 12 3062
[10] Cheng R, Bai J W, Liao L, Zhou H L, Chen Y, Liu L X, Lin Y C, Jiang S, Huang Y and Duan X F 2012 Proc. Nation Acad. Sci. 109 11588
[11] Guo Z L, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y K, Ruan M, Hankinson J, Kunc J, Cressler J D, Berger C and De Heer W A 2013 Nano Lett. 13 942
[12] Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
[13] Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305
[14] Zhou H L, Yu W J, Liu L X, Cheng R, Chen Y, Huang X Q, Liu Y, Wang Y, Huang Y and Duan X F 2013 Nat. Commun. 4 2096
[15] Luo B, Liu H T, Jiang L L, Jiang L, Geng D C, Wu B, Hu W Q, Liu Y Q and Yu G 2013 J. Mater. Chem. C 1 2990
[16] Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoffl R S 2013 Science 342 720
[17] Liang X L, Sperling B A, Calizo I, Cheng G J, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H L, Li Q L, Zhu X X, Yuan H, Hight Walker A R, Liu Z F, Peng L M and Richter C A 2011 ACS Nano. 5 9144
[18] Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
[19] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[20] Lin Y M, Jenkins K, Farmer D, Valdes-Garcia A, Avouris P, Sung C Y, Chiu H Y and Ek B 2009 IEEE International Electron Devices Meeting (IEDM), December 2009 New York, USA, pp. 1-4
[21] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[22] Joshi P, Romero H E, Neal A T, Toutam V K and Tadigadapa S A 2010 J. Phys: Condens. Matter 22 334214
[23] Venugopal A, Colombo L and Vogel E M 2010 Appl. Phys. Lett. 96 013512
[24] Liu W J, Li M F, Xu S H, Zhang Q, Zhu Y H, Pey K L, Hu H L, Shen Z X, Zou X, Wang J L, Wei J, Zhu H L and Yu H Y 2010 IEEE International Electron Devices Meeting (IEDM), December 2010 San Francisco, CA, p. 23.3.1
[25] Ji X, Zhang J, Wang Y, Qian H and Yu Z 2013 Phys. Chem. Chem. Phys. 15 17883
[26] Xia F N, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotech. 6 179
[27] Chen Z and Appenzeller J 2008 IEEE International Electron Devices Meeting (IEDM), December 2008 San Francisco, CA, pp. 1-4
[28] Chen K, Wan X, Liu D Q, Kang Z W, Xie W G, Chen J, Miao Q and Xu J B 2013 Nanoscale 5 5784
[29] Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W and Whang D 2014 Science 344 2014
[1] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[2] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[3] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[4] Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs
Shu-Xiang Sun(孙树祥), Hui-Fang Ji(吉慧芳), Hui-Juan Yao(姚会娟), Sheng Li(李胜), Zhi Jin(金智), Peng Ding(丁芃), Ying-Hui Zhong(钟英辉). Chin. Phys. B, 2016, 25(10): 108501.
[5] 100-nm T-gate InAlAs/InGaAs InP-based HEMTs with fT=249 GHz and fmax=415 GHz
Wang Li-Dan (汪丽丹), Ding Peng (丁芃), Su Yong-Bo (苏永波), Chen Jiao (陈娇), Zhang Bi-Chan (张毕禅), Jin Zhi (金智). Chin. Phys. B, 2014, 23(3): 038501.
[6] Collector optimization for tradeoff between breakdown voltage and cut-off frequency in SiGe HBT
Fu Qiang (付强), Zhang Wan-Rong (张万荣), Jin Dong-Yue (金冬月), Ding Chun-Bao (丁春宝), Zhao Yan-Xiao (赵彦晓), Lu Dong (鲁东). Chin. Phys. B, 2014, 23(11): 114402.
[7] 0.15-μm T-gate In0.52Al0.48As/In0.53Ga0.47As InP-based HEMT with fmax of 390 GHz
Zhong Ying-Hui (钟英辉), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Wang Xian-Tai (王显泰), Lü Hong-Liang (吕红亮), Liu Xin-Yu (刘新宇), Jin Zhi (金智). Chin. Phys. B, 2013, 22(12): 128503.
[8] Device research on GaAs-based InAlAs/InGaAs metamorphic high electron mobility transistors grown by metal organic chemical vapour deposition
Xu Jing-Bo(徐静波), Zhang Hai-Ying(张海英), Fu Xiao-Jun(付晓君), Guo Tian-Yi(郭天义), and Huang Jie(黄杰). Chin. Phys. B, 2010, 19(3): 037302.
No Suggested Reading articles found!