Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110208    DOI: 10.1088/1674-1056/23/11/110208
RAPID COMMUNICATION Prev   Next  

Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation

Liu Zheng-Guang (刘争光)a b, Wang Chong-Yu (王崇愚)a c d, Yu Tao (于涛)a
a Central Iron and Steel Research Institute, Beijing 100081, China;
b Department of Physics, North University of China, Taiyuan 030051, China;
c Department of Physics, Tsinghua University, Beijing 100084, China;
d International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China
Abstract  The effect of Re on stacking fault (SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni-Al-Re embedded-atom-method potential. A parameter (ΔEsfb), the activation energy of SF nucleation under shear strain, is introduced to evaluate the effect of Re on SF nucleation under shear strain. Calculation results show that ΔEsfb decreases with Re addition, which means that SF nucleation under shear strain in Ni may be enhanced by Re. The atomic structure observation shows that the decrease of ΔEsfb may be due to the expansion of local structure around the Re atom when SF goes through the Re atom.
Keywords:  molecular dynamics      activation energy      stacking fault nucleation  
Received:  23 May 2014      Revised:  16 July 2014      Accepted manuscript online: 
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).
Corresponding Authors:  Wang Chong-Yu     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Liu Zheng-Guang (刘争光), Wang Chong-Yu (王崇愚), Yu Tao (于涛) Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation 2014 Chin. Phys. B 23 110208

[1] Kablov E N and Petrushin N V 2008 Superalloys 2008 (Ed. Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S and Woodard S A) (Warrendale (PA): TMS) p. 901
[2] Yu J J, Hou G C, Zhao N R, Jin T, Sun X F, Guan H R and Hu Z Q 2006 Rare Metal Materials and Eengineering 35 1231
[3] Walston S, Cetel A and MacKay R, O'Hara1 K, Duhl D and Dreshfield R 2004 Superalloys 2004 (Ed. Green K A, Pollock T M, Harada H, Howson T E, Reed R C and Schirra J J) (Warrendale (PA): TMS) p. 15
[4] Ma S, Carroll L and Pollock T M 2007 Acta Mater. 55 5802
[5] Yu X X and Wang C Y 2009 Acta Mater. 57 5914
[6] Zacherl C L, Shang S L, Kim D E, Wang Y and Liu Z K 2012 Superalloys (Ed. Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D and Telesman J) p. 455
[7] Henkelman G and Jonsson H 2000 J. Chem. Phys. 113 9978
[8] Henkelman G, Uberuaga P B and Jonsson H 2000 J. Chem. Phys. 113 9901
[9] Nakano 2008 Comp. Phys. Comm. 178 280
[10] Du J P, Wang C Y and Yu T 2013 Modelling Simul. Mater. Sci. Eng. 21 015007
[11] Liu Z G, Wang C Y and Yu T 2013 Modell. Simul. Mater. Sci. Eng. 21 045009
[12] Liu Z G, Wang C Y and Yu T 2014 Computational Materials Science 83 196
[13] Steve P, Aidan T and Paul C LAMMPS Molecular Dynamics Simulator
[14] Rice J R 1992 J. Mech. Phys. Solids 40 239
[15] Aubry S, Kang K, Ryu S and Cai W 2011 Scripta Mater. 64 1043
[16] Xie H X, Wang C Y and Yu T 2008 J. Mater. Res. 23 1597
[17] Mottura A, Miller M K and Reed R C 2008 Superalloys 2008 (ed. Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S and Woodard S A) (Warrendale (PA): TMS) p. 891
[18] Mottura A, Wu R T, Finnis M W and Reed R C 2008 Acta Mater. 56 2669
[19] Zhu T, Li J and Yip S 2004 Phys. Rev. Lett. 93 025503
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!