Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118702    DOI: 10.1088/1674-1056/23/11/118702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Applicability of initial optimal maternal and fetal electrocardiogram combination vectors to subsequent recordings

Yan Hua-Wen (闫华文)a, Huang Xiao-Lin (黄晓林)a, Zhao Ying (肇莹)a, Si Jun-Feng (司峻峰)a, Liu Tie-Bing (刘铁兵)b, Liu Hong-Xing (刘红星)a
a School of Electronic Science and Engineering, Nanjing University, Xianlin Campus, Nanjing 210046, China;
b Nanjing General Hospital of Nanjing Military Command, Nanjing 210023, China
Abstract  

A series of experiments are conducted to confirm whether the vectors calculated for an early section of a continuous non-invasive fetal electrocardiogram (fECG) recording can be directly applied to subsequent sections in order to reduce the computation required for real-time monitoring. Our results suggest that it is generally feasible to apply the initial optimal maternal and fetal ECG combination vectors to extract the fECG and maternal ECG in subsequent recorded sections.

Keywords:  fetal monitoring      real-time multi-channel recording      independent component analysis (ICA)      periodic component analysis  
Received:  25 April 2014      Revised:  09 June 2014      Accepted manuscript online: 
PACS:  87.85.-d (Biomedical engineering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61271079).

Corresponding Authors:  Liu Tie-Bing, Liu Hong-Xing     E-mail:  njbull@163.com;njhxliu@nju.edu.cn

Cite this article: 

Yan Hua-Wen (闫华文), Huang Xiao-Lin (黄晓林), Zhao Ying (肇莹), Si Jun-Feng (司峻峰), Liu Tie-Bing (刘铁兵), Liu Hong-Xing (刘红星) Applicability of initial optimal maternal and fetal electrocardiogram combination vectors to subsequent recordings 2014 Chin. Phys. B 23 118702

[1] Hasan M A, Reaz M B I, Ibrahimy M I, Hussain M S and Uddin J 2009 Biol. Proced. Online 11 263
[2] Zhang J M, Guan Q, Tang L M, Liu T B, Liu H X, Huang X L and Si J F 2014 Chin. Phys. B 23 018701
[3] Zheng W, Liu H X and Cheng J C 2011 Biomed. Tech. 56 309
[4] Vullings R, Peters C H L, Sluijter R J, Mischi M, Oei S G and Bergmans J W M 2009 Physiol. Meas. 30 291
[5] Zheng W, L H X, He A J, Ning X B and Cheng J C 2010 Med. Eng. Phys. 32 708
[6] Zheng W, Wei X Y, Zhong J and Liu H X 2013 Comput. Meth. Prog. Bio. 112 125
[7] Ouali M A and Chafaa K 2013 Computer Applications Technology (ICCAT), 2013 International Conference on, January 20-22, 2013 Sousse, p. 1
[8] Oosterom A V 1986 J. Perinat. Med. 14 411
[9] Su L, Ma L, Sun B W and Guo S M 2014 Acta Phys. Sin. 63 104302 (in Chinese)
[10] Zheng W, Liu H X and Cheng J C 2012 IET Signal Process 6 171
[11] Shi Z W and Zhang C S 2007 Neurocomputing 70 1547
[12] Sameni R, Jutten C and Shamsollahi M B 2008 IEEE Trans. Biomed. Eng. 55 1935
[13] Tsalaile T, Sameni R, Sanei S, Jutten C and Chambers J 2009 IEEE Trans. Biomed. Eng. 56 646
[14] Hyvarinen A and Oja E 1997 Neural. Comput. 9 1483
[15] Cardoso J F 1989 Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference on, May 23-26, 1989 Glasgow, p. 2109
[16] Wei L and Rajapakse J C 2005 IEEE Trans Neural. Networ. 16 203
[17] Wei L and Rajapakse J C 2006 Neurocomputing 69 2244
[18] Martin-Clemente R, Camargo-Olivares J L, Hornillo-Mellado S, Elena M and Roman I 2011 IEEE Trans. Biomed. Eng. 58 227
[19] You R Y and Chen Z 2005 Chin. Phys. 14 2176
[20] Chen H B, Feng J C and Fang Y 2008 Chin. Phys. Lett. 25 405
[21] The MIT-BIH Non-Invasive Fetal Electrocardiogram Database. Available at: http://www.physionet.org/physiobank/database/nifecgdb/ [1 May 2013]
[22] Jafari M G and Chambers J A 2005 IEEE Trans. Biomed. Eng. 52 390
[1] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[2] A progressive processing method for breast cancer detection via UWB based on an MRI-derived model
Xiao Xia (肖夏), Song Hang (宋航), Wang Zong-Jie (王宗杰), Wang Liang (王梁). Chin. Phys. B, 2014, 23(7): 074101.
[3] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[4] A new magneto-cardiogram study using a vector model with a virtual heart and the boundary element method
Zhang Chen (张琛), Shou Guo-Fa (寿国法), Lu Hong (陆宏), Hua Ning (华宁), Tang Xue-Zheng (唐雪正), Xia Ling (夏灵), Ma Ping (马平), Tang Fa-Kuan (唐发宽). Chin. Phys. B, 2013, 22(9): 090701.
[5] Magnetic nanoparticle-based cancer nanodiagnostics
Muhammad Zubair Yousaf, Yu Jing (余靓), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2013, 22(5): 058702.
[6] Detrended cross-correlation analysis of electroencephalogram
Wang Jun(王俊) and Zhao Da-Qing(赵大庆) . Chin. Phys. B, 2012, 21(2): 028703.
[7] Symbolic transfer entropy-based premature signal analysis
Wang Jun(王俊) and Yu Zheng-Feng(余正锋) . Chin. Phys. B, 2012, 21(1): 018702.
[8] Cardiac magnetic source imaging based on current multipole model
Tang Fa-Kuan(唐发宽), Wang Qian(王倩), Hua Ning(华宁), Lu Hong(陆宏), Tang Xue-Zheng(唐雪正), and Ma Ping(马平). Chin. Phys. B, 2011, 20(1): 010702.
[9] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
No Suggested Reading articles found!