Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117302    DOI: 10.1088/1674-1056/23/11/117302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polarization dependence of the light coupling to surface plasmons in an Ag nanoparticle & Ag nanowire system

Yang Chao-Jie (杨超杰)a, Zhao Hua-Bo (赵华波)a, Wang Pei-Pei (王培培)a, Li Jie (李洁)a, Tang Peng (唐鹏)a, Qu Sheng-Chun (曲胜春)b, Lin Feng (林峰)a, Zhu Xing (朱星)a c
a School of Physics, Peking University, Beijing 100871, China;
b Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
c National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  

Polarization dependence of the coupling of excitation light to surface plasmon polaritons (SPPs) was investigated in a Ag nanoparticle-nanowire waveguide system (a Ag nanoparticle attached to a Ag nanowire). It was found that under the illumination of excitation light on the nanoparticle-nanowire junction, the coupling efficiency of light to SPPs depends on the polarization of the excitation light. Theoretical simulations revealed that it is the local near-field coupling between the nanoparticle and the nanowire that enhances the incident light to excite the nanowire SPPs. Because the shapes of the Ag nanoparticles differ, the local field intensity, and thus the excitement of the nanowire SPPs, vary with the polarization of the excitation light.

Keywords:  Ag nanowire      Ag nanoparticle      surface plasmon      local near field  
Received:  25 April 2014      Revised:  16 June 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB933004 and 2007CB936801), the National Natural Science Foundation of China (Grant Nos. 11374023, 61176120, and 60977015), the National Undergraduate Innovational Experimentation Program, China, and the National Fund for Fostering Talents of Basic Science (NFFTBS), China (Grant Nos. J1030310 and J1103205).

Corresponding Authors:  Lin Feng     E-mail:  linf@pku.edu.cn

Cite this article: 

Yang Chao-Jie (杨超杰), Zhao Hua-Bo (赵华波), Wang Pei-Pei (王培培), Li Jie (李洁), Tang Peng (唐鹏), Qu Sheng-Chun (曲胜春), Lin Feng (林峰), Zhu Xing (朱星) Polarization dependence of the light coupling to surface plasmons in an Ag nanoparticle & Ag nanowire system 2014 Chin. Phys. B 23 117302

[1] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phy. Rev. Lett. 95 257403
[2] Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822
[3] Lal S, Link S and Halas N J 2007 Nat. Photon. 1 641
[4] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[5] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383
[6] Solis D, Chang W S, Khanal B P, Bao K, Nordlander P, Zubarev E R and Link S 2010 Nano Lett. 10 3482
[7] Wang W H, Yang Q, Fan F R, Xu H X and Wang Z L 2011 Nano Lett. 11 1603
[8] Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P and Xu H X 2011 Phy. Rev. Lett. 107 096801
[9] Kusar P, Gruber C, Hohenau A and Krenn J R 2012 Nano Lett. 12 661
[10] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[11] Chang W S, Slaughter L S, Khanal B P, Manna P, Zubarev E R and Link S 2009 Nano Lett. 9 1152
[12] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[13] Ozbay E 2006 Science 311 189
[14] Liu J T, Xu B Z, Zhang J, Cai L K and Song G F 2012 Chin. Phys. B 21 107303
[15] Pan P, Wei H and Xu H X 2013 Chin. Phys. B 22 097305
[16] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
[17] Wei H and Xu H X 2012 Nanophotonics 1 155
[18] Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nat. Commun. 2 387
[19] Dong C H, Ren X F, Yang R, Duan J Y, Guan J G, Guo G C and Guo G P 2009 Appl. Phys. Lett. 95 221109
[20] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515
[21] Sun Y G, Mayers B, Herricks T and Xia Y N 2003 Nano Lett. 3 955
[22] Korte K E, Skrabalak S E and Xia Y N 2008 J. Mater. Chem. 18 437
[23] Wang C, Hu Y J, Lieber C M and Sun S. H 2008 J. Am. Chem. Soc. 130 8902
[24] Kim F, Sohn K, Wu J S and Huang J X 2008 J. Am. Chem. Soc. 130 14442
[25] Li X, Wang L and Yan G 2011 Cryst. Res. Technol. 46 427
[26] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
[27] Kenens B, Rybachuk M, Hofkens J and Uji I H 2013 J. Phys. Chem. C 117 2547
[28] Dickson R M and Lyon L A 2000 J. Phys. Chem. B 104 6095
[29] Lee P C and Meisel D 1982 J. Phys. Chem. 86 3391
[30] Hutchison J A, Centeno S P, Odaka H, Fukumura H, Hofkens J and Uji I H 2009 Nano Lett. 9 995
[31] Laroche T and Girard C 2006 Appl. Phys. Lett. 89 233119
[32] Jackson J D 1999 Classical Electrodynamics (New York: John Wiley & Sons)
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[10] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[13] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
No Suggested Reading articles found!