Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118401    DOI: 10.1088/1674-1056/23/11/118401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Threshold flux-controlled memristor model and its equivalent circuit implementation

Wu Hua-Gan (武花干)a, Bao Bo-Cheng (包伯成)b, Chen Mo (陈墨)b
a School of Eelctronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
b School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
Abstract  

Modeling a memristor is an effective way to explore the memristor properties due to the fact that the memristor devices are still not commercially available for common researchers. In this paper, a physical memristive device is assumed to exist whose ionic drift direction is perpendicular to the direction of the applied voltage, upon which, corresponding to the HP charge-controlled memristor model, a novel threshold flux-controlled memristor model with a window function is proposed. The fingerprints of the proposed model are analyzed. Especially, a practical equivalent circuit of the proposed model is realized, from which the corresponding experimental fingerprints are captured. The equivalent circuit of the threshold memristor model is appropriate for various memristors based breadboard experiments.

Keywords:  memristor      window function      equivalent circuit      experiment  
Received:  25 March 2014      Revised:  23 April 2014      Accepted manuscript online: 
PACS:  84.30.Bv (Circuit theory)  
  84.30.-r (Electronic circuits)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51277017) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012583).

Corresponding Authors:  Bao Bo-Cheng     E-mail:  mervinbao@126.com

Cite this article: 

Wu Hua-Gan (武花干), Bao Bo-Cheng (包伯成), Chen Mo (陈墨) Threshold flux-controlled memristor model and its equivalent circuit implementation 2014 Chin. Phys. B 23 118401

[1] Chua L O 2011 Appl. Phys. A: Mater. Sci. Process 102 765
[2] Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507
[3] Itoh M and Chua L O 2009 Int. J. Bifurc. Chaos 19 3605
[4] Borghettil J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature Lett. 464 873
[5] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[6] Kim H, Sah M P, Yang C, Roska T and Chua L O 2012 IEEE Trans. Circuit Syst. I: Regular Papers 59 148
[7] Wang F 2013 IEEE Trans. Circuits Syst. I: Regular Papers 60 616
[8] Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335
[9] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[10] Li Z J and Zheng Y C 2013 Chin. Phys. B 22 040502
[11] Huang D, Wu J J and Tang Y H 2014 Chin. Phys. B 23 038404
[12] Belevitch V 1962 Proc. IRE 50 848
[13] Wang X Y, Fitch A L, Iu H H C, Sreeramb V and Qi W G 2012 Chin. Phys. B 21 108501
[14] Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J and Huang D 2013 Chin. Phys. B 22 078901
[15] Li Z J, Zeng Y C and Tan Z P 2014 Acta Phys. Sin. 63 098501 (in Chinese)
[16] Kvatinsky S, Friedman E G, Kolodny A and Weiser U C 2013 IEEE Trans. Circuits Syst. I : Regular Papers 60 211
[17] Kim H, Sah M P, Yang C, Cho S and Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422
[18] Yu D S, Liang Y, Chen H and Iu H H C 2013 IEEE Trans. Circuits Syst. II: Exp. Briefs 60 207
[19] Liang Y, Yu D S and Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese)
[20] Wang X Y, Fitch A L, Iu H H C and Qi W G 2012 Phys. Lett. A 376 394
[21] Biolek Z, Biolek D and Biolková V 2009 Radioengineering 18 210
[22] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[23] Pershin Y V and Di Ventra M 2011 Adv. Phys. 60 145
[24] Adhikari S P, Sah M Pd, Kim H and Chua L O 2013 IEEE Trans. Circuits Syst. I: Regular Papers 60 3008
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[6] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[7] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[13] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[14] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[15] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
No Suggested Reading articles found!