Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094210    DOI: 10.1088/1674-1056/23/9/094210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China

Xu Jin (徐晋)a, Xie Pin-Hua (谢品华)a, Si Fu-Qi (司福祺)a, Li Ang (李昂)a, Wu Feng-Cheng (吴丰成)a, Wang Yang (王杨)a, Liu Jian-Guo (刘建国)a, Liu Wen-Qing (刘文清)a, Andreas Hartlb, Chan Ka Lokb
a Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
b School of Energy and Environment, City University of Hong Kong, Hong Kong, China
Abstract  An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.
Keywords:  air pollution      tropospheric NO2      airborne multi-axis differential optical absorption spectroscopy      vertical column  
Received:  20 December 2013      Revised:  25 March 2014      Accepted manuscript online: 
PACS:  42.68.Ca (Spectral absorption by atmospheric gases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41275037, 41275038, and 41275027).
Corresponding Authors:  Xie Pin-Hua     E-mail:  phxie@aiofm.ac.cn

Cite this article: 

Xu Jin (徐晋), Xie Pin-Hua (谢品华), Si Fu-Qi (司福祺), Li Ang (李昂), Wu Feng-Cheng (吴丰成), Wang Yang (王杨), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清), Andreas Hartl, Chan Ka Lok Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China 2014 Chin. Phys. B 23 094210

[1] Platt U and Stutz J 2008 Differential Optical Absorption Spectroscopy: Principles and Applications (Heidelberg: Springer-Verlag) ISBN: 978-3540211938 p. 597
[2] Platt U 1999 Phys. Chem. Chem. Phys. 1 5409
[3] Friedeburg C V, Pundt I, Kai-Uwe M, Wagner T and Platt U 2005 Atmospheric Environment 39 977
[4] Leser H, Hönninger G and Platt U 2003 Geophys. Res. Lett. 30 1537
[5] Hendrick F, Barret B, van Roozendael M, Boesch H, Butz A, De Maziére M, Goutail F, Hermans C, Lambert J C, Pfeilsticker K and Pommereau J P 2004 Atmos. Chem. Phys. 4 2091
[6] Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G and Liu W Q 2013 Acta Phys. Sin. (in Chinese)
[7] Wang Y, Li A, Xie P H, Zeng Y, Wang R B, Chen H, Pei X, Liu J G and Liu W Q 2012 Chin. Phys. B 21 114211
[8] Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noel S, Rozanov V V, Chance K and Goede A P H 1999 J. Atmos. Sci. 56 127
[9] Leue C, Wenig M, Wagner T, Klimm O, Platt U and Jaehne B 2001 J. Geophys. Res. 106 5493
[10] Richter A and Burrows J P 2002 Adv. Space Res. 29 1673
[11] Martin R V, Parrish D D, Ryerson T B, Nicks J D K, Chance K, Kurosu T P, Fried A, Wert B P, Jacob D J and Sturges E D 2004 J. Geophys. Res. 109 D24307
[12] Pfeilsticker P and Platt U 1994 Geophys. Res. Lett. 21 1375
[13] Petritoli A, Ravegnani F, Giovanelli G, Bortoli D, Bonaf U, Kostadinov I and Oulanovsky A 2002 Appl. Opt. 27 5593
[14] McElroy C T, McLinden C A and McConnell J C 1999 Nature 397 338
[15] Melamed M L, Solomon S, Daniel J S, Langford A O, Portmann R W, Ryerson T B, Nicks Jr D K and McKeen S A 2003 J. Environ. Monit. 5 29
[16] Wang P, Richter A, Bruns M, Rozanov V V, Burrows J P, Heue K P, Wagner T, Pundt I and Platt U 2005 Atmos. Chem. Phys. 5 337
[17] Xu J, Xie P H, Si F Q, Li A and Liu W Q Acta Phys. Sin. 61 024204 (in Chinese)
[18] Xu J, Xie P H, Si F Q, Li A, Zhou H J, Wu F C, Wang Y, Liu J G and Liu W Q Acta Phys. Sin. 62 104214 (in Chinese)
[19] Heland J, Schlager H, Richter A and Burrows J P 2002 Geophys. Res. Lett. 29 1983
[20] Heue K P 2005 Ph. D. Thesis University of Heidelberg Germany
[21] Rozano A V, Rozanov V and Burrows J P 2001 J. Quant. Spectrosc. Radiat. Transfer 69 491
[22] Wagner T, Ibrahim O, Shaiganfar R and Platt U 2010 Atmos. Meas. Tech. 3 129
[23] Fayt C and Roozendael M V 2001 WinDOAS 2.1 Software User Manual
[24] Burrows J P, Dehn A, Deters B, Himmelmann S, Richter A, Voigt S and Orphal J 1998 Journal of Quantitative Spectroscopy and Radiative Transfer 60 1025
[25] Burrow J P, Dehn A, Deters B, Himmelmann S, Richter A, Voigt S and Orphal J 1999 Journal of Quantitative Spectroscopy and Radiative Transfer 61 509
[26] Greenblatt G D, Orlando J J, Burkholder J B and Ravishankara A R 1990 J. Geophys. Res. 95 18577
[27] Kraus S 2006 DOASIS, A Framework Design for DOAS (Ph.D. Thesis) (University of Heidelberg)
[28] Grainger J F and Ring J 1962 Nature 193 762
[1] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[2] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[3] Wavelength modulation spectroscopy for measurements of gas parameters in combustion field
Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎). Chin. Phys. B, 2017, 26(6): 064207.
[4] Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy
Xue Lu(卢雪), Min Qin(秦敏), Pin-Hua Xie(谢品华), Jun Duan(段俊), Wu Fang(方武), Liu-Yi Ling(凌六一), Lan-Lan Shen(沈兰兰), Jian-Guo Liu(刘建国), Wen-Qing Liu(刘文清). Chin. Phys. B, 2016, 25(2): 024210.
[5] Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei
Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清). Chin. Phys. B, 2013, 22(12): 129201.
[6] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[7] Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique
Wang Yang (王杨), Li Ang (李昂), Xie Pin-Hua (谢品华), Zeng Yi (曾议), Wang Rui-Bin (王瑞斌), Chen Hao (陈浩), Pei Xian (裴显), Liu Jian-Guo (刘建国), and Liu Wen-Qing (刘文清 ). Chin. Phys. B, 2012, 21(11): 114211.
[8] Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination
Gao Wei(高伟), Chen Wei-Dong(陈卫东), Zhang Wei-Jun(张为俊), Yuan Yi-Qian(袁怿谦), and Gao Xiao-Ming(高晓明) . Chin. Phys. B, 2012, 21(1): 014211.
No Suggested Reading articles found!