Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097801    DOI: 10.1088/1674-1056/23/9/097801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spectroscopic properties of Yb3+-doped TeO2-BaO-BaF2-Nb2O5-based oxyfluoride tellurite glasses

Lin She-Bao (林社宝)a b, Wang Peng-Fei (王鹏飞)a, She Jiang-Bo (佘江波)a, Guo Hai-Tao (郭海涛)a, Xu Shen-Nuo (许慎诺)a b, Yu Cheng-Long (于成龙)c, Liu Chun-Xiao (刘春晓)d, Peng Bo (彭波)a e
a State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China;
d School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601, China;
e Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, China
Abstract  A series of oxyfluoride glasses with the compositions of 75 mol% TeO2, 10 mol% Nb2O5, (15 mol%-x) BaO, x BaF2 (x=0 mol%, 5 mol%, 10 mol%, 15 mol%) doped with Yb2O3 were prepared by the melt-quenching method. Their emission cross-sections, fluorescence lifetimes, and gain properties were investigated by using the absorption spectra and the fluorescence decay curves. The results show that by substituting BaF2 for BaO, the emission cross-section decreases from 1.37 pm2 to 1.21 pm2, and the fluorescence lifetime increases from 0.71 ms to 0.96 ms. These properties indicate that this oxyfluoride tellurite glass may have potential uses as the Yb2O3-doped gain medium in a solid laser.
Keywords:  Yb      oxyfluoride tellurite glass      spectroscopic properties      gain coefficient  
Received:  07 February 2014      Revised:  25 March 2014      Accepted manuscript online: 
PACS:  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177086, 61307046, and 61308086) and the West Light Foundation of the Chinese Academy of Sciences (Grant No. Y129261213).
Corresponding Authors:  Peng Bo     E-mail:  bpeng@opt.ac.cn

Cite this article: 

Lin She-Bao (林社宝), Wang Peng-Fei (王鹏飞), She Jiang-Bo (佘江波), Guo Hai-Tao (郭海涛), Xu Shen-Nuo (许慎诺), Yu Cheng-Long (于成龙), Liu Chun-Xiao (刘春晓), Peng Bo (彭波) Spectroscopic properties of Yb3+-doped TeO2-BaO-BaF2-Nb2O5-based oxyfluoride tellurite glasses 2014 Chin. Phys. B 23 097801

[1] Honninger C, Morier-Genoud F, Moser M, Keller U, Brovelli L R and Harder C 1998 Opt. Lett. 23 126
[2] Peng B, Jiang L, Qiu X M, Fan Z C and Huang W 2005 J. Alloys Compd. 398 170
[3] Xu S, Wang P, Zheng R, Wei W and Peng B 2013 J. Lumin. 140 26
[4] Feng X, Qi C H, Lin F Y and Hu H F 1999 J. Non-Cryst. Solids 257 372
[5] Wang C, Wang P, Zheng R, Xu S, Wei W and Peng B 2012 Opt. Mater. 34 1549
[6] Wang P F, Li W N, Peng B and Lu M 2012 J. Non-Cryst. Solids 358 788
[7] Wang G N, Zhang J J, Dai S X, Yang J H and Jiang Z H 2005 Phys. Lett. A 341 285
[8] Dai S, Wu J, Zhang J, Wang G and Jiang Z 2005 Spectrochim Acta. A Mol. Biomol. Spectrosc. 62 431
[9] Yang H X, Lin H, Lin L, Zhang Y Y, Zhai B and Pun E Y B 2008 J. Alloys Compd. 453 493
[10] Biswas K, Sontakke A D, Ghosh J and Annapurna K 2010 J. Am. Ceram. Soc. 93 1010
[11] Zou X and Toratani H 1995 Phys. Rev. B 52 15889
[12] Payne S A, Chase L L, Smith L K, Kway W L and Krupke W F 1992 IEEE J. Quantum Electron. 28 2619
[13] Choi J H, Margaryan A, Margaryan A and Shia F G 2005 J. Alloys Compd. 396 79
[14] Wang P, Wang C, Li W, Lu M and Peng B 2013 J. Non-Cryst. Solids 359 5
[15] Barua P, Sekiya E H, Saito K and Ikushima A J 2008 J. Non-Cryst. Solids 354 4760
[16] Wang G, Xu S, Dai S, Zhang J and Jiang Z 2004 J. Alloys Compd. 373 246
[17] Courrol L C, Kassab L R P, Morais A S, Mendes C M S, Gomes L, Wetter N U, Vieira N D, Cassanjes F C, Messaddeq Y and Ribeiro S J L 2003 J. Lumin. 102 106
[18] Wang G N, Xu S Q, Dai S X, Yang J H, Hu L L and Jiang Z H 2004 J. Non-Cryst. Solids 336 102
[19] Wang G N, Zhang J J, Xu S Q, Dai S X, Hu L L and Jiang Z H 2004 J. Lumin. 109 1
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[3] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[6] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[7] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[8] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[9] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[12] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[13] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[14] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[15] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
No Suggested Reading articles found!