Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090503    DOI: 10.1088/1674-1056/23/9/090503
GENERAL Prev   Next  

Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

Yan Sen-Lin (颜森林)
School of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 210017, China
Abstract  The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range.
Keywords:  chaos      synchronization      optical logic      semiconductor laser  
Received:  08 November 2013      Revised:  30 January 2014      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  02.10.Ab (Logic and set theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204139).
Corresponding Authors:  Yan Sen-Lin     E-mail:  yansenlinbsh@sina.com

Cite this article: 

Yan Sen-Lin (颜森林) Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers 2014 Chin. Phys. B 23 090503

[1] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B and Xia G Q 2012 Opt. Commun. 285 1442
[2] Yan S L 2005 Chin. Phys. Lett. 22 2504
[3] Annovazzi-Lodi V, Donati S and Sciré A 1996 J. IEEE Quantum Electronics 32 953
[4] Zhu S Q, Lü X, Chen X F, Thornbrug K S Jr, VanWiggeren G D and Roy R 2000 Chin. Phys. 9 337
[5] Fan L, Xia G Q and Wu Z M 2009 Acta Phys. Sin. 58 0989 (in Chinese)
[6] Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese)
[7] Liu M, Zhang M J, Wang A B, Wang L S, Ji Y N and Ma Z 2013 Acta Phys. Sin. 62 064209 (in Chinese)
[8] Li X F, Pan W, Ma D, Luo B, Zhang W L and Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese)
[9] Sinha S and Ditto W L 1998 Phys. Rev. Lett. 81 2156
[10] Murali K, Sina S and Ditto W L 2003 Int. J. Bifur. Chaos Appl. Sci. Eng. 13 2669
[11] Chlouverakis K E and Adams M J 2005 Electron. Lett. 41 359
[12] Yan S L 2010 Chin. Opt. Lett. 8 1147
[13] Yan S L 2012 Optics & Laser Technology 44 83
[14] Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese)
[15] Yan S L 2011 Chin. Sci. Bull. 56 1264
[16] Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z and Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872
[17] Wu J, Wu Z, Xia G Q, Deng T, Lin X, Tang X and Feng G 2011 IEEE Photon. Technol. Lett. 23 1854
[18] Xiang S Y, Pan W, Wen A J, Li N Q, Zhang L Y, Shang L and Zhang H X 2013 IEEE Photon. Technol. Lett. 25 587
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[9] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[10] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[11] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[12] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[13] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[14] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[15] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
No Suggested Reading articles found!