Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087103    DOI: 10.1088/1674-1056/23/8/087103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigations of the half-metallic behavior and the magnetic and thermodynamic properties of half-Heusler CoMnTe and RuMnTe compounds:A first-principles study

T. Djaafria, A. Djaafria, A. Eliasa, G. Murtazab, R. Khenatac, R. Ahmedd, S. Bin Omrane, D. Rachedf
a Department of Physics, Faculty of Science, Dr Tahar Moulay University, 20000 Saida, Algeria;
b Modeling Laboratory, Department of Physics, Islamia College Peshawar, Pakistan;
c LPQ3M Laboratory, Department of Physics, Faculty of Science and Technology, Mascara University, 29000 Mascara, Algeria;
d Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor, Malaysia;
e Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia;
f Department of Physics, Faculty of Science, Djillali Liabes University, 22000 Sidi Bel-Abbes, Algeria
Abstract  First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW+lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metallicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 μB and 3 μB per unit cell for RuMnTe, nicely follow the rule μtot=Zt-18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time.
Keywords:  half-Heusler alloys      half-metallic behavior      magnetism      thermodynamic properties      first principles methods  
Received:  12 January 2014      Revised:  28 February 2014      Accepted manuscript online: 
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.25.Bt (Thermodynamic properties)  
  75.50.Gg (Ferrimagnetics)  
Corresponding Authors:  G. Murtaza, R. Khenata     E-mail:  murtaza@icp.edu.pk;khenata_rabah@yahoo.fr

Cite this article: 

T. Djaafri, A. Djaafri, A. Elias, G. Murtaza, R. Khenata, R. Ahmed, S. Bin Omran, D. Rached Investigations of the half-metallic behavior and the magnetic and thermodynamic properties of half-Heusler CoMnTe and RuMnTe compounds:A first-principles study 2014 Chin. Phys. B 23 087103

[1] Heusler F 1903 Verh. Dtsch. Phys. Ges. 5 219
[2] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1984 Appl. Phys. 55 2151
[3] Galanaki I an Dederich P H 2005 J. Phys.: Condens. Matter 676 1
[4] Endo K, Phayama T and Kitamura R 1964 J. Phys. Soc. Jpn. 19 1494
[5] Kubler J 1984 Physica B 127 257
[6] Dunlap R, Stroink G and Dini K 1986 J. Phys. F: Met. Phys. 16 1083
[7] Zukovski W, Andrejezuk A, Dobrzyeski L, Cooper M J, Dixon M A G, Gardelis S, Lawson P K, Buslaps T, Kaprzyk S, Neumann K U and Ziebeck K R 1997 J. Phys.: Condens. Matter 9 10993
[8] Worgull J, Petti E and Trivisonno J 1996 Phys. Rev. B 54 15695
[9] Plogmann S, Schlatholter T, Braun J and Neumann M 1999 Phys. Rev. B 60 6428
[10] Ishada S, Ishada J, Asano S and Yamashita J 1978 J. Phys. Soc. Jpn. 45 1239
[11] Kubler J, Williams A R and Sommers C B 1983 Phys. Rev. B 28 1745
[12] Fujii S, Ishida S and Asano S 1989 J. Phys. Soc. Jpn. 58 3657
[13] Webster P J and Ziebeck K R A 1973 J. Phys. Chem. Solids 34 1647
[14] Aquela A A, Enkovaara J, Uliakko K and Nieminen R E 1999 J. Phys.: Condens. Matter 11 2017
[15] Deb A and Sakurai Y 2000 J. Phys.: Condens. Matter 12 2997
[16] Kakeshita K and Ullakko K 2002 MRS Bulletin 27 105
[17] Mullner R, Chermenko V A and Kostorz G 2003 Ser. Mater. 49 129
[18] Chernenko V A, L'vov V A, Mullner R, Kostorz G and Takagi T 2004 Phys. Rev. B 69 134410
[19] Kulkova S E, Eremeev S V and Kulkov S S 2004 Solid State Commun. 130 793
[20] Kulkova S E, Eremeev S V, Kakeshita T, Kulkov S S and Rudenski G E 2006 Mater. Trans. 47 599
[21] de Groot R A, van der Kraan A M and Buschow K H J 1986 J. Magn. Magn. Mater. 61 330
[22] Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399
[23] Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901
[24] Blonco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
[25] Blonco M A, Pendás A M, Francisco E, Recio J M and Franco R 1996 J. Mol. Struct. Theochem 368 245
[26] Francisco E, Blonco M A and Sanjurjo G 2001 Phys. Rev. B 63 049107
[27] Merabiha O, Seddik T, Khenata R, Murtaza G, Bouhemadou A, Takagiwa Y, Bin Omran S and Rached D 2014 J. Alloys Compd. 586 529
[28] Bouhemadou A, Khenata R and Amrani B 2009 Physica B 404 3534
[29] Peng F, Fu H and Yang X 2008 Physica B 403 2851
[30] Selçuk Kervan and Nazmiye Kervan 2014 Intermetallics 46 45
[31] Lin S Y, Yang X B and Zhao Y J 2014 J. Magn. Magn. Mater. 350 119
[32] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[33] Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C and Buschow K H J 1989 J. Phys.: Condens. Matter 1 2341
[34] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[35] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 134428
[36] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
[37] Ishida S, Fujii S, Kashiwagi S and Asano S 1995 J. Phys. Soc. Jpn. 64 2152
[38] Fujii S, Ishida S and Asano S 1995 J. Phys. Soc. Jpn. 64 185
[39] Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Brek R, de Boer F R and Li Y X 2004 J. Appl. Phys. 95 7219
[40] Nanda B R K and Dasgupta I 2003 J. Phys.: Condens. Matter 15 7307
[41] Jung D, Koo H J and Whangbo M J 2000 J. Mol. Struct. Theochem 527 113
[42] Zhang M, Dai X, Hu H, Lui G, Cui Y, Chen J, Wang J and Wu G 2003 J. Phys.: Condens. Matter 15 7891
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[4] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[8] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[9] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[10] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[11] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[12] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[13] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[14] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[15] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
No Suggested Reading articles found!