Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088111    DOI: 10.1088/1674-1056/23/8/088111
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Annealing effect of platinum-incorporated nanowires created by focused ion/electron-beam-induced deposition

Fang Jing-Yue (方靖岳)a, Qin Shi-Qiao (秦石乔)a, Zhang Xue-Ao (张学骜)a, Liu Dong-Qing (刘东青)b, Chang Sheng-Li (常胜利)a
a College of Science, National University of Defense Technology, Changsha 410073, China;
b College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are convenient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the conductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.
Keywords:  electron-beam-induced deposition      ion-beam-induced deposition      annealing      current leakage      single electron transistor  
Received:  14 December 2013      Revised:  10 March 2014      Accepted manuscript online: 
PACS:  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the Research Project of National University of Defense Technology, China (Grant No. JC13-02-14) and the National Natural Science Foundation of China (Grant No. 11104349).
Corresponding Authors:  Fang Jing-Yue     E-mail:  fjy_nudt@yahoo.com.cn

Cite this article: 

Fang Jing-Yue (方靖岳), Qin Shi-Qiao (秦石乔), Zhang Xue-Ao (张学骜), Liu Dong-Qing (刘东青), Chang Sheng-Li (常胜利) Annealing effect of platinum-incorporated nanowires created by focused ion/electron-beam-induced deposition 2014 Chin. Phys. B 23 088111

[1] Botman A, Mulders J J L, Weemaes R and Mentink S 2006 Nanotechnology 17 3779
[2] Randolph S J, Fowlkes J D and Rack P D 2006 Crit. Rev. Solid State Mater. Sci. 31 55
[3] Jafri S H M, Blom T, Wallner A, Welch K, StrΦmme M, Ottosson H and Leifer K 2011 Microelectron. Eng. 88 2629
[4] Wu C H, Jhan F J, Chen J H, Jeng J T, Chen K L and Yang H C 2011 IEEE Trans. Appl. Supercond. 21 375
[5] Li W X, Fenton J C, Gu C Z and Warburton P A 2011 Microelectron. Eng. 88 2636
[6] Tseng A A 2005 Small 1 924
[7] Zhang X A, Fang J Y, Sun J D, Qin H, Chang S L and Qin S Q 2013 J. Nanosci. Nanotech. 13 2589
[8] Fang J Y, Qin S Q, Zhang X A, Wang F, Shao Z Z, Wang G and Chang S L 2013 Microelectron. Eng. 108 1
[9] Su L N, Gu X F, Qin H and Yan D W 2013 Acta Phys. Sin. 62 077301 (in Chinese)
[10] Zhang X G, Fang Z H, Chen K J, Qian X Y, Liu G Y, Xu J, Huang X F and He F 2011 Acta Phys. Sin. 60 027304 (in Chinese)
[11] Li W, Xu L, Zhao W M, Ding H L, Ma Z Y, Xu J and Chen K J 2010 Chin. Phys. B 19 047308
[12] Shen H H, Peng S M, Long X G, Zhou X S, Yang L, Liu J H, Sun Q Q and Zu X T 2012 Chin. Phys. B 21 076101
[13] Ma Y Z, Pang L L, Zhu Y B, Wang Z G and Shen T L 2011 Chin. Phys. B 20 078104
[14] Karre P S K, Bergstrom P L, Mallick G and Karna S P 2007 J. Appl. Phys. 102 024316
[15] Cheam D D, Walczak K A, Archaya M, Friedrich C R and Bergstrom P L 2011 Microelectron. Eng. 88 1906
[16] Botman A, Hesselberth M and Mulders J J L 2008 Microelectron. Eng. 85 1139
[17] Cui Z 2005 Micro-Nanofabrication Technologies and Applications (Beijing: Higher Education Press) p. 144 (in Chinese) ISBN: 9787040263589
[18] Botman A, Mulders J J L, Weemaes R and Mentink S 2006 Nanotechnology 17 3779
[19] Murakami K, Yamasaki N, Abo S, Wakaya F and Takai M 2005 J. Vac. Sci. Technol. B 23 759
[20] David L K, Richard R, Andrew K L L, Alivisatos A P and Paul L M 1997 Nature 389 699
[21] Choi B H, Hwang S W, Kim I G, Shin H C, Kim Y and Kim E K 1998 Appl. Phys. Lett. 73 3129
[1] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[2] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[3] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[4] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[5] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[6] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[7] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[10] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[11] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[12] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[13] Preparation of graphene on SiC by laser-accelerated pulsed ion beams
Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强). Chin. Phys. B, 2021, 30(11): 116106.
[14] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[15] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
No Suggested Reading articles found!