Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084206    DOI: 10.1088/1674-1056/23/8/084206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multipole resonance in the interaction of a spherical Ag nanoparticle with an emitting dipole

Liu Jia-Dong (刘加东)a b, Song Feng (宋峰)a b, Zhang Jun (张俊)b, Liu Shu-Jing (刘淑静)c, Wang Feng-Xiao (王凤箫)b, Wang Li-Chao (王立超)b
a TEDA Applied Physics School, Nankai University, Tianjin 300457, China;
b School of Physics, Nankai University, Tianjin 300071, China;
c School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
Abstract  The effect of multipole resonance in the interaction between a spherical metallic nanoparticle (MNP) and an emitting dipole is studied with the Mie theory. The results show that the absorption peak of the MNP with respect to the field of the emitting dipole is blue-shifted with the decrease of the spacing between MNP and emitting dipole due to the enhanced multipole resonance. At a short distance, the enhanced multipole terms of scattering are not obvious compared with the dipole term. For the decay rate of the emitting dipole, multipole resonance brings about the enhancement of it largely at short spacing. For the radiative decay rate, the behavior is quite different. The dipole term is dominant at a short spacing, and the multipole term is dominant at a larger spacing.
Keywords:  Mie theory      multipole resonance      absorption      decay rate  
Received:  21 February 2014      Revised:  02 April 2014      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61138004 and 61107068) and the National Basic Research Program of China (Grant No. 2012CB921904).
Corresponding Authors:  Song Feng     E-mail:  fsong@nankai.edu.cn

Cite this article: 

Liu Jia-Dong (刘加东), Song Feng (宋峰), Zhang Jun (张俊), Liu Shu-Jing (刘淑静), Wang Feng-Xiao (王凤箫), Wang Li-Chao (王立超) Multipole resonance in the interaction of a spherical Ag nanoparticle with an emitting dipole 2014 Chin. Phys. B 23 084206

[1] Lü H B, Burge R E, Qu D N and Yuan X 1994 Chin. Phys. 3 809
[2] Zhang X D, Wu Z S and Wu C K 1997 Chin. Phys. Lett. 14 32
[3] Das P C 2002 Phys. Rev. B 65 155416
[4] Chen Y, Munechika K and Ginger D S 2007 Nano Lett. 7 690
[5] Zhao C H, Zhang B P and Shang P P 2009 Chin. Phys. B 18 5539
[6] Khoury C G, Norton S J and Vo-Dinh T 2010 Nanotechnology 21 315203
[7] Lee S M and Choi K C 2013 Opt. Lett. 38 1355
[8] Dvoynenko M M and Wang J K 2013 Opt. Lett. 38 760
[9] Yu W, Wang X Z, Dai W L, Lu W B, Liu Y M and Fu G S 2013 Chin. Phys. B 22 057804
[10] Li X P, Chen B J, Shen R S, Zhang J S, Sun J S, Cheng L H, Zhong H Y, Tian Y, Fu S B and Du G T 2013 Chin. Phys. B 22 023202
[11] Raether H 1986 Surface Plasmons on Smooth and Rough Surface and on Gratings (Berlin: Springer-Verlag) p. 18
[12] Han H, Valle V and Maye M M 2012 Nanotechnology 23 435401
[13] Mie G 1908 Annalen der Physik 330 377
[14] Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: Wiley) pp. 83-129
[15] Ruppin R 1982 J. Chem. Phys. 76 1681
[16] Gersten J and Nitzan A 1981 J. Chem. Phys. 75 1139
[17] Palik E D 1985 Handbook of Optical Constants of Solids (San Diego: Academic Press) pp. 351-357
[18] Liaw J W, Liu C L, Tu W M and Sun C S 2011 J. Quantum Spectrosc. Rad. 112 893
[19] Kerker M and Blatchford C G 1982 Plays. Rev. B 26 4052
[20] Lü F T, Zheng H R and Fang Y 2007 Process. Chem. 19 256 (in Chinese)
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[5] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[6] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[7] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[8] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[9] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[10] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[11] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[12] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[13] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[14] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[15] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
No Suggested Reading articles found!