Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 089401    DOI: 10.1088/1674-1056/23/8/089401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere

Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨)
Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China
Abstract  Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency artificially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (Δf) of the discrete, multi-frequency waves. We find that there is a threshold value of Δf for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to Δf (proportional to the frequency components Nw) when Δf is below the threshold value but it remains unchanged with increasing Δf when Δf is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.
Keywords:  wave-particle interactions      test particle simulations      discrete multi-frequency whistler waves      ionospheric modification  
Received:  25 March 2014      Revised:  17 April 2014      Accepted manuscript online: 
PACS:  94.20.wj (Wave/particle interactions)  
  94.30.Ny (Energetic particle precipitation)  
  94.20.Vv (Ionospheric disturbances, irregularities, and storms)  
  94.30.Tz (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41204120 and 41304130) and the Fundamental Research Funds for the Central Universities (Grant No. 2042014kf0251).
Corresponding Authors:  Chang Shan-Shan     E-mail:  whu.css1108@gmail.com

Cite this article: 

Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨) Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere 2014 Chin. Phys. B 23 089401

[1] Shprits Y Y, Subbotin D and Ni B B 2009 J. Geophys. Res. 114 A11209
[2] Su Z P, Xiao F L, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A09208
[3] Su Z P, Xiao F L, Zheng H N and Wang S 2011 Geophys. Res. Lett. 38 L06106
[4] Su Z P and Zheng H N 2009 Chin. Phys. Lett. 26 129401
[5] Xiao F L, Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A05216
[6] Qureshi M N S, Sehar S, Shah H A and Cao J B 2013 Chin. Phys. B 22 035201
[7] Chen Y, Zhao D, Liu W X, Wang Y and Wan X S 2012 Chin. Phys. B 21 104103
[8] Thorne R M 2010 Geophys. Res. Lett. 37 L22107
[9] Summers D 2005 J. Geophys. Res. 108 A8
[10] Summers D, Ni B B and Meredith N P 2007 J. Geophys. Res. 112 A04207
[11] Ni B B, Thorne R M, Shprits Y Y and Bortnik J 2008 Geophys. Res. Lett. 35 L11106
[12] Ni B B, Zhao Z Y, Gu X D and Wang F 2008 Acta Phys. Sin. 57 7937 (in Chinese)
[13] Xiao F L, He Z G, Zhang S, Su Z P and Chen L X 2011 Chin. Phys. Lett. 28 39401
[14] Zhang S and Xiao F L 2010 Chin. Phys. Lett. 27 129401
[15] Xiao F L, Chen L, He Y, Su Z P and Zheng H J 2011 Atmos. Sol-Terr. Phys. 73 106
[16] Xiao F L, Yang C, Zhou Q H, He Z, He Y, Zhou X and Tang L 2012 J. Geophys. Res. 117 A08204
[17] Xiao F L, Zong Q G, Su Z P, Yang C, He Z G, Wang Y F and Gao Z L 2013 Sci. Rep. 3 1654
[18] Abel B and Thorne R M 1998 J. Geophys. Res. 103 2385
[19] Abel B and Thorne R M 1998 J. Geophys. Res. 103 2397
[20] Inan U S, Chang H C and Helliwell R A 1984 J. Geophys. Res. 89 2891
[21] Inan U S, Bell T F, Bortnik J and Albert J M 2003 J. Geophys. Res. 108 1186
[22] Gu X D, Zhao Z Y, Ni B B, Wang X and Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese)
[23] Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y and Wu F 2010 Acta Phys. Sin. 60 039401 (in Chinese)
[24] Chang S S, Ni B B, Zhao Z Y, Wang F, Li J X, Zhao J J, Gu X D and Zhou C 2014 Acta Phys. Sin. 63 (in Chinese)
[25] Barr R and P Stubbe 1991 Geophys. Res. Lett. 18 1035
[26] Platino M, Inan U S, Bell T F, Parrot M and Kennedy E J 2006 Geophys. Res. Lett. 33 L16101
[27] Piddyachiy D, Inan U S, Bell T F, Lehtinen N G and Parrot M 2008 J. Geophys. Res. 113 A10308
[28] Ferraro A J, Lee H S, Allshouse R, Carroll K, Tomko A A, Kelly F J and Joiner R G 1982 J. Atmos. Terr. Phys. 44 1113
[29] Bortnik J 2005 "Precipitation of Radiation Belt Electrons by Lightning-Generated Magnetospherically Reflecting Whistler Waves", (Ph. D. dissertation) (California: Stanford University)
[30] Wang F, Zhao Z Y, Chang S S, Ni B B and Gu X D 2012 Acta Phys. Sin. 61 199401 (in Chinese)
[31] Shklyar D R, Parrot M, Chum J, Santolik O and Titova E E 2010 J. Geophys. Res. 115 A05203
[32] Tao X, Bortnik J, Albert M J, Liu K and Thorne R M 2011 Geophys. Res. Lett. 38 L06105
[33] Bortnik J and Thorne R M 2010 J. Geophys. Res. 115 A07213
[34] Tao X and Bortnik J 2010 Nonlinear Processes Geophys. 17 599
[35] Xiao F L, Zong Q G and Chen L X 2009 J. Geophys. Res. 114 A01215
[36] Xiao F L, Su Z P, Zheng H N, and Wang S 2009 J. Geophys. Res. 114 A03201
[37] Su Z P, Zhu H, Xiao F L, Zheng H N, Shen C, Wang Y and Wang S 2012 J. Geophys. Res. 117 A09222
[38] Su Z P, Zhu H, Xiao F L, Zheng H N, Shen C, Wang Y and Wang S 2013 J. Geophys. Res. 8 1
[39] Zhu H, Su Z P, Xiao F L, Zheng H N, Shen C, Wang Y and Wang S 2012 J. Geophys. Res. 117 A12217
[40] Albert M J 1999 J. Geophys. Res. 104 A22429
[41] Jiang H, Yang X X, Lin M M, Shi Y R and Duan W S 2011 Chin. Phys. B 20 019401
[42] Zahedian M, Maraghechi B and Rouhani M H 2012 Chin. Phys. B 21 034101
[43] Tao X, Bortnik J, Albert M J, Thorne R M and W Li 2013 J. Atmos. Terr. Phys. 99 62
[1] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[2] North west cape-induced electron precipitation and theoretical simulation
Zhen-xia Zhang(张振霞), Xin-qiao Li(李新乔), Chen-Yu Wang(王辰宇), Lun-Jin Chen. Chin. Phys. B, 2016, 25(11): 119401.
[3] A 0.33-THz second-harmonic frequency-tunable gyrotron
Zheng-Di Li(李铮迪), Chao-Hai Du(杜朝海), Xiang-Bo Qi(戚向波), Li Luo(罗里), Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2016, 25(2): 029401.
[4] Study of typical space wave-particle coupling eventspossibly related with seismic activity
Zhang Zhen-Xia (张振霞), Wang Chen-Yu (王辰宇), Shen Xu-Hui (申旭辉), Li Xin-Qiao (李新乔), Wu Shu-Gui (吴书贵). Chin. Phys. B, 2014, 23(10): 109401.
[5] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[6] Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam
Chen Ye (陈晔), Zhao Ding (赵鼎), Liu Wen-Xin (刘文鑫), Wang Yong (王勇), Wan Xiao-Sheng (万晓声). Chin. Phys. B, 2012, 21(10): 104103.
[7] Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler
Maryam Zahedian, B. Maraghechi, and M.H. Rouhani . Chin. Phys. B, 2012, 21(3): 034101.
[8] The interaction of nonlinear waves in two-dimensional dust crystals
Jiang Hong(姜虹), Yang Xiao-Xia(杨晓霞), Lin Mai-Mai(林麦麦), Shi Yu-Ren(石玉仁), and Duan Wen-Shan(段文山). Chin. Phys. B, 2011, 20(1): 019401.
[9] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
No Suggested Reading articles found!