Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088901    DOI: 10.1088/1674-1056/23/8/088901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling walking behavior of pedestrian groups with floor field cellular automaton approach

Lu Li-Li (陆丽丽)a b, Ren Gang (任刚)a b, Wang Wei (王炜)a b, Wang Yi (王义)a b
a Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China;
b Jiangsu Provincial Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China
Abstract  Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton (CA) model is therefore proposed to describe the walking behavior of pedestrian groups. This model represents the motion of pedestrian groups in a realistic way. The simulation results reveal that the walking behavior of groups has an important but negative influence on pedestrian flow dynamics, especially when the density is at a high level. The presence of pedestrian groups retards the emergence of lane formation and increases the instability of operation of pedestrian flow. Moreover, the average velocity and volume of pedestrian flow are significantly reduced due to the group motion. Meanwhile, the parameter-sensitive analysis suggests that pedestrian groups should make a compromise between efficient movement and staying coherent with a certain spatial structure when walking in a dense crowd.
Keywords:  pedestrian groups      floor field CA model      leader-follower pattern      simulation  
Received:  21 March 2014      Revised:  24 April 2014      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  02.50.Cw (Probability theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51278101 and 51338003), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120092110043), and the Scientific Innovation Research Project of College Graduate in Jiangsu Province, China (Grant No. CXZZ13_0117).
Corresponding Authors:  Ren Gang     E-mail:  rengang@seu.edu.cn

Cite this article: 

Lu Li-Li (陆丽丽), Ren Gang (任刚), Wang Wei (王炜), Wang Yi (王义) Modeling walking behavior of pedestrian groups with floor field cellular automaton approach 2014 Chin. Phys. B 23 088901

[1] Okazaki S and Matsushita S 1993 International Conference on Engineering for Crowd Safety, p. 271
[2] Okazaki S 1979 Trans. AIJ 283 111
[3] Helbing D and Molnar P 1995 Phys. Rev. E 51 4282
[4] Yu W J, Chen R, Dong L Y and Dai S Q 2005 Phys. Rev. E 72 26112
[5] Blue V J and Adler J L 1999 Res. Rec. J. Transp. Res. Board 1678 135
[6] Blue V and Adler J 2000 Proc. Artificial Life VII p. 437
[7] Blue V J and Adler J L 2000 Transp. Res. Rec. J. Transp. Res. Board 1710 20
[8] Blue V J and Adler J L 2001 Transp. Res. Part B Methodol. 35 293
[9] Zhu N, Jia B, Shao C F and Yue H 2012 Chin. Phys. B 21 050501
[10] Yue H, Hao H, Chen X and Shao C 2007 Physica A: Stat. Mech. Its Appl. 384 567
[11] Kuang H, Li X L, Wei Y F, Song T and Dai S Q 2010 Chin. Phys. B 19 070517
[12] Batty M 2001 Environ. Plan. B Plan. Des. 28 321
[13] Klügl F and Rindsfüser G 2007 Multiagent System Technologies (Berlin/Heidelberg: Springer) p. 145
[14] Batty M, Jiang B and Thurstain-Goodwin M 1998 Centre for Advanced Spatial Analysis Working Paper Series 4
[15] Rindsfüser G and Klügl F 2007 disP-The Plan. Rev. 43 9
[16] Moussaïd M, Perozo N, Garnier S, Helbing D and Theraulaz G 2010 PLoS One 5 e10047
[17] Qiu F and Hu X 2010 Simul. Model. Pract. Theory 18 190
[18] Köster G, Seitz M, Treml F, Hartmann D and Klein W 2011 Contemp. Soc. Sci. 6 397
[19] Manzoni S, Vizzari G, Ohtsuka K and Shimura K 2011 The 10th International Conference on Autonomous Agents and Multiagent Systems p. 1223
[20] Vizzari G, Manenti L and Crociani L 2013 Complex Adapt. Syst. Model. 1 1
[21] Pu G 2012 "Study of Pedestrian Companion Groups Modeling and Simulating", MS Thesis (Kunming: Kunming University of Science and Technology) (in Chinese)
[22] Yang L Z, Zhao D L, Li J and Fang T Y 2005 Build. Environ. 40 411
[23] Kirchner A and Schadschneider A 2002 Physical A: Stat. Mech. Its Appl. 312 260
[24] Schadschneider A, Kirchner A and Nishinari K 2002 CA Approach to Collective Phenomena in Pedestrian Dynamics Cellular Automata (Berlin: Springer) p. 239
[25] Nishinari K, Kirchner A, Namazi A and Schadschneider A 2004 IEICE Trans. Inf. Syst. 87 726
[26] Zheng Y, Jia B, Li X G and Zhu N 2011 Physica A: Stat. Mech. Its Appl. 390 3147
[27] Li X and Dong L Y 2012 Chin. Phys. Lett. 29 098902
[28] Yang X F, Wei M and Qiang F 2013 Acta Phys. Sin. 62 240511 (in Chinese)
[29] Gorrini A, Bandini S, Dias C and Shiwakoti N 2013 Transportation Research Board, 92nd Annual Meeting, January 13-17, 2013, Washington DC, USA 13-1136
[30] Xie D F, Gao Z Y, Zhao X M and Wang D Z W 2012 J. Transp. Eng. 138 1442
[31] Li X, Duan X Y and Dong L Y 2012 Chin. Phys. B 21 108901
[32] Ma J, Song W G and Liao G X 2010 Chin. Phys. B 19 128901
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!