Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 083301    DOI: 10.1088/1674-1056/23/8/083301
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Electromagnetic wave absorbing properties and hyperfine interactions of Fe-Cu-Nb-Si-B nanocomposites

Han Man-Gui (韩满贵)a, Guo Wei (郭韦)a, Wu Yan-Hui (吴燕辉)a, Liu Min (刘明)b, Magundappa L. Hadimanic
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Analytical and Testing Center, Sichuan University, Chengdu 610064, China;
c Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
Abstract  The Fe-Cu-Nb-Si-B alloy nanocomposite containing two ferromagnetic phases (amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy (HR-TEM) images show the coexistence of these two phases. It is found that Fe-Si nanograins are surrounded by the retained amorphous ferromagnetic phase. Mössbauer spectroscopy measurements show that the nanophase is the D03 -type Fe-Si phase, which is employed to find the atomic fractions of resonant 57Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe-Cu-Nb-Si-B nanocomposite are measured in the frequency range of 0.5 GHz-10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than -10 dB in a frequency band of 1.93 GHz-3.20 GHz.
Keywords:  Mössbauer spectroscopy      magnetic permeability      nanocrystalline alloys  
Received:  04 September 2013      Revised:  15 December 2013      Accepted manuscript online: 
PACS:  33.45.+x (M?ssbauer spectra)  
  75.50.Bb (Fe and its alloys)  
  75.50.Tt.  
Fund: Project supported by the Research Fund for International Young Scientists of the National Natural Science Foundation of China (Grant No. 61250110544), the National Natural Science Foundation of China (Grant No. 61271039), the Scientific Foundation of Young Scientists in Sichuan Province, China (Grant No. 2012JQ0053), and the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-11-0060).
Corresponding Authors:  Han Man-Gui     E-mail:  mangui@gmail.com

Cite this article: 

Han Man-Gui (韩满贵), Guo Wei (郭韦), Wu Yan-Hui (吴燕辉), Liu Min (刘明), Magundappa L. Hadimani Electromagnetic wave absorbing properties and hyperfine interactions of Fe-Cu-Nb-Si-B nanocomposites 2014 Chin. Phys. B 23 083301

[1] Kazimierczuk M K 2009 High Frequency Magnetic Components (John Wiley & Sons, Ltd)
[2] Li S, Liu M, Lou J, Xing X, Wu J, Hu Y, Cai X, Xu F, Sun N X and Duh J G 2013 J. Nanosci. Nanotech. 13 1091
[3] Han Y, Cheung G, Li A, Sullivan C R and David J P 2012 IEEE Trans. Power Electr. 27 425
[4] Abbas S M, Chandra M, Verma A, Chatterjee R and Goel T C 2006 Composites Part A 37 2148
[5] Nakamura T 2000 J. Appl. Phys. 88 348
[6] Korolev K A, McCloy J S and Afsar M N 2012 J. Appl. Phys. 111 07E113
[7] Nakamura T and Hankui E 2003 J. Magn. Magn. Mater. 257 158
[8] Goldman Alex 2006 Modern Ferrites Technology, 2nd edn. (Springer)
[9] Yan L G, Wang J B, Han X H, Ren Y, Liu Q F and Li F S 2010 Nanotechnology 21 095708
[10] Yang X C, Liu R J, Shen X Q, Song F Z, Jing M X and Meng X F 2013 Chin. Phys. B 22 058101
[11] Chiriac H and Ovari T 1996 Prog. Mater. Sci. 40 333
[12] Varga L K and Kovacs G 2012 IEEE Trans. Magn. 48 1360
[13] Kuzmann E, Stichleutner S, Sapi A, Klencsar Z, Oshtrakh M I, Semionkin V A, Kubuki S, Homonnay Z and Varga L K 2013 Hyperfine Interact. 219 63
[14] Füzerová J, Füzer J, Kollár P, Bureš R and Fáberová M 2013 J. Magn. Magn. Mater. 345 77
[15] McHenry M E, Willard M A and Laughlin D E 1999 Prog. Mater. Sci. 44 291
[16] Stearns M B 1963 Phys. Rev. 129 1136
[17] Miglierini M and Greneche J M 1997 J. Phys.: Condens. Matter 9 2303
[18] Kopcewicz M 2005 Handbook of Advanced Magnetic Material, Vol. II (Beijing: Tsinghua University Press)
[19] Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Technol. 19 65
[20] Han M, Liang D and Deng L 2011 Appl. Phys. Lett. 99 082503
[21] Lu H P, Han M G, Cai L and Deng L J 2011 Chin. Phys. B 20 060701
[1] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[2] Structural, Mössbauer spectroscopy, magnetic properties, and thermal measurements of Y3-xDyxFe5O12
Mahdi Lataifeh, Qassem I Mohaidat, Sami H Mahmood, Ibrahim Bsoul, Mufeed Awawdeh, Ibrahim Abu-Aljarayesh, Mu'ath Altheeba. Chin. Phys. B, 2018, 27(10): 107501.
[3] Mössbauer studies on the shape effect of Fe84.94Si9.68Al5.38 particles on their microwave permeability
Han Man-Gui (韩满贵), Deng Long-Jiang (邓龙江). Chin. Phys. B, 2013, 22(8): 083303.
[4] Spin excitations in a K0.84Fe1.99Se2 superconductor as studied by Mössbauer spectroscopy
Li Zhi-Wei(李志伟), Ma Xiao-Ming(马小明), Pang Hua(庞华), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(4): 047601.
[5] Fabrication and electromagnetic wave absorption properties of amorphous Ni–P nanotubes
Lu Hai-Peng(陆海鹏), Han Man-Gui(韩满贵), Cai Li(蔡黎), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2011, 20(6): 060701.
[6] Annealing effects on the microwave permittivity and permeability properties of Fe79Si16B5 microwires and their micowave absorption performances
Han Man-Gui(韩满贵), Ou Yu (欧雨), Liang Di-Fei (梁迪飞), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2009, 18(3): 1261-1265.
No Suggested Reading articles found!