Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080502    DOI: 10.1088/1674-1056/23/8/080502
GENERAL Prev   Next  

Solid-state resonant tunneling thermoelectric refrigeration in the cylindrical double-barrier nanostructure

Liu Nian (刘念)a, Luo Xiao-Guang (罗小光)b, Zhang Mao-Lian (章毛连)a
a Department of Physical and Electronics, Anhui Science and Technology University, Bengbu 233100, China;
b Department of Physics, Southeast University, Nanjing 211189, China
Abstract  A solid-state thermoelectric refrigerator with a cylindrical InP/InAs/InP double-barrier heterostructure is proposed. Based on the ballistic electron transport and the asymmetrical transmission, we derive the expressions of the performance parameters of this refrigerator. The cooling rate rather than the coefficient of performance is affected by the area of the inner cylinder. Then through the numerical simulation, a triangular cooling rate region is found with respect to the chemical potential and bias voltage; further, that it is because of the small full width at half maximum of the transmission resonance and the linear relationship between the energy position of resonance and the bias voltage. These tunable results might supply some guide to the cooling in tiny components or devices.
Keywords:  thermoelectric      cooling region      double-barrier heterostructure      resonant tunneling  
Received:  07 January 2014      Revised:  13 February 2014      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  73.50.Lw (Thermoelectric effects)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities and the Research and Innovation Project for College Graduates of Jiangsu Province, China (Grant No. CXZZ13_0081).
Corresponding Authors:  Liu Nian     E-mail:  lnlive@163.com

Cite this article: 

Liu Nian (刘念), Luo Xiao-Guang (罗小光), Zhang Mao-Lian (章毛连) Solid-state resonant tunneling thermoelectric refrigeration in the cylindrical double-barrier nanostructure 2014 Chin. Phys. B 23 080502

[1] Goldsmid H J 1964 Thermoelectric Refrigeration (New York: Plenum Press)
[2] Mahan G D 1994 J. Appl. Phys. 76 4362
[3] Apertet Y, Ouerdane H, Glavatskaya O, Goupil C and Lecoeur P 2012 Europhys. Lett. 97 28001
[4] Pichanusakorn P and Bandaru P R 2010 Mater. Sci. Eng. R 67 19
[5] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
[6] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[7] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard Ⅲ W A and Heath J R 2008 Nature 451 168
[8] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[9] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[10] Humphrey T E, Newbury R, Taylor R P and Linke H 2002 Phys. Rev. Lett. 89 116801
[11] Nakpathomkun N, Xu H Q and Linke H 2010 Phys. Rev. B 82 235428
[12] Wang H, Wu G, Fu Y and Chen D 2012 J. Appl. Phys. 111 094318
[13] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[14] Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
[15] Labounty C, Shakouri A and Bowers J E 2001 J. Appl. Phys. 89 4059
[16] O'Dwyer M F, Lewis R A, Zhang C and Humphrey T E 2005 Phys. Rev. B 72 205330
[17] Lyu P and Zhang C 2006 Appl. Phys. Lett. 89 153125
[18] Lee J H, Bargatin I, Melosh N A and Howe R T 2012 Appl. Phys. Lett. 100 173904
[19] Luo X G and He J Z 2011 Chin. Phys. B 20 030509
[20] Vassell M O, Lee J and Lockwood H F 1983 J. Appl. Phys. 54 5206
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[11] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[14] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!