Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087303    DOI: 10.1088/1674-1056/23/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer

Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平)
Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  A geometrical configuration of Fe2O3/Au core-shell nanorice dimer is proposed and its multipolar plasmon Fano-like resonance characteristics are theoretically investigated by generalizing the plasmon hybridization model of individual nanorice to the bright and dark modes of the nanorice dimer. Under the irradiation of polarization light, the extinction spectra of the nanorice dimer are numerically simulated by using the finite element method (FEM). Our studies show that the Fano-like resonance of the nanorice dimer results in an asymmetric line shape of the Fano dip in the extinction spectrum which can be controlled by varying the structure parameters of the nanorice dimer. Meanwhile, there is a giant field enhancement at the gap between the two nanorices on account of the plasmonic coupling in the nanorice dimer. The aforementioned two characteristics of the nanorice dimer are useful for plasmon-induced transparency and localized surface plasmon resonance sensors.
Keywords:  localized surface plasmon resonance      field enhancement      nanorice      plasmon hybridization  
Received:  29 November 2013      Revised:  16 February 2014      Accepted manuscript online: 
PACS:  73.22.Lp (Collective excitations)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275153 and 61320106014), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY12A04002), the International Collaboration Program of the Natural Science Foundation of Ningbo (Grant Nos. 2010D10018 and 2012A610107), K. C. Wong Education Foundation and the K. C. Wong Magna Foundation of Ningbo University, China.
Corresponding Authors:  Zhou Jun     E-mail:  zhoujun@nbu.edu.cn

Cite this article: 

Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平) Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer 2014 Chin. Phys. B 23 087303

[1] Romani E C, Vitoreti D, Gouvêa P M P, Caldas P G, Prioli R, Paciornik S, Fokine M, Braga A M B, Gomes A S L and Carvalho I C S 2012 Opt. Express 20 5429
[2] Leduc C, Si S, Gautier J, Soto-Ribeiro M, Wehrle-Haller B, Gautreau A, Giannone G, Cognet L and Lounis B 2013 Nano Lett. 13 1489
[3] Stender A S, Marchuk K, Liu C, Sander S, Meyer M W, Smith E A, Neupane B, Wang G F, Li J J and Cheng J X 2013 Chem. Rev. 113 2469
[4] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J and Luo Y 2013 Nature 498 82
[5] Ruemmele J A, Hall W P, Ruvuna L K and Van Duyne R P 2013 Anal. Chem. 85 4560
[6] Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y, Hong M and Maier S A 2012 Nano Lett. 12 2101
[7] Angelomé P C, Heidari Mezerji H, Goris B, Pastoriza-Santos I, Pérez-Juste J, Bals S and Liz-Marzán L M 2012 Chem. Mater. 24 1393
[8] Ringe E, Zhang J, Langille M R, Sohn K, Cobley C, Au L, Xia Y N, Mirkin C A, Huang J X, Marks L D and Van Duyne R P 2010 Mater. Res. Soc. Symp. Proc. 1208 O10
[9] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[10] Li J N, Liu T Z, Zheng H R, Gao F, Dong J, Zhang Z L and Zhang Z Y 2013 Opt. Express 21 17176
[11] Yang Z J, Zhang Z S, Zhang L H, Li Q Q, Hao Z H and Wang Q Q 2011 Opt. Lett. 36 1542
[12] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[13] Zhang Y, Jia T Q, Zhang H M and Xu Z Z 2012 Opt. Lett. 37 4919
[14] Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q and Zhang Z Y 2011 Nano Lett. 11 49
[15] Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
[16] Fang Z Y, Liu Z, Wang Y M, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3038
[17] Fang Z Y, Wang Y M, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P and Halas N J 2012 ACS Nano 6 10222
[18] Huang X H, El-Sayed I H, Qian W and El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115
[19] Carpin L B, Bickford L R, Agollah G, Yu T K, Schiff R, Li Y and Drezek R A 2011 Breast Cancer Res. Treat. 125 27
[20] Jiang S M, Wu D J, Cheng Y and Liu X J 2012 Chin. Phys. B 21 127806
[21] Cai Y, Li Y, Nordlander P and Cremer P S 2012 Nano Lett. 12 4881
[22] McLellan J M, Li Z Y, Siekkinen A R and Xia Y N 2007 Nano Lett. 7 1013
[23] Zhou F, Liu Y and Li Z Y 2011 Chin. Phys. B 20 037303
[24] Wu D J, Jiang S M and Liu X J 2012 Chin. Phys. B 21 077803
[25] Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X and Wang W Z 2013 Chin. Phys. B 22 106102
[26] Fernandez-Dominguez A I, Luo Y, Wiener A, Pendry J B and Maier S A 2012 Nano Lett. 12 5946
[27] Zhang J T, Tang Y, Lee K and Ouyang M 2010 Science 327 1634
[28] Wang H, Brandl D W, Le F, Nordlander P and Halas N J 2006 Nano Lett. 6 827
[29] Jain P K and El-Sayed M A 2007 Nano Lett. 7 2854
[30] Jain P K and El-Sayed M A 2007 J. Phys. Chem. C 111 17451
[31] Hooshmand N, Jain P K and El-Sayed M A 2011 J. Phys. Chem. C 2 374
[32] Khoury C G, Norton S J and Vo-Dinh T 2009 ACS Nano 3 2776
[33] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[34] Brown L V, Sobhani H, Britt Lassiter J, Nordlander P and Halas N J 2010 ACS Nano 4 819
[35] Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C and Brevet P F 2010 Nano Lett. 10 1717
[36] Knight M W and Halas N J 2008 New J. Phys. 10 105006
[37] Hu Y, Noelck S and Drezek R 2010 ACS Nano 4 1521
[38] Ye J, Lagae L, Maes G, Borghs G and Dorpe P V 2009 Opt. Express 17 23765
[39] Zou W B, Zhou J, Jin L and Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese)
[40] Wu D J, Jiang S M and Liu X J 2012 J. Phys. Chem. C 116 13745
[41] An W, Zhu T and Zhu Q Z 2014 J. Quantum Spectrosc. Radiat. Transf. 132 28
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[3] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[4] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[5] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[6] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[7] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[8] Extra-narrowband metallic filters with an ultrathin single-layer metallic grating
Ran Wang(王然), Qi-Huang Gong(龚旗煌), Jian-Jun Chen(陈建军). Chin. Phys. B, 2020, 29(6): 064215.
[9] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[10] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[11] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[12] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[13] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[14] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[15] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
No Suggested Reading articles found!