Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087201    DOI: 10.1088/1674-1056/23/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An improved EEHEMT model for kink effect on AlGaN/GaN HEMT

Cao Meng-Yi (曹梦逸)a, Lu Yang (卢阳)a, Wei Jia-Xing (魏家行)b, Chen Yong-He (陈永和)a, Li Wei-Jun (李卫军)b, Zheng Jia-Xin (郑佳欣)a, Ma Xiao-Hua (马晓华)a b, Hao Yue (郝跃)a
a Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
b School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
Abstract  In this paper, a new current expression based on both the direct currect (DC) characteristics of the AlGaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the AlGaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of I-V, S-parameter, and radio frequency (RF) large-signal characteristics are compared for a self-developed on-wafer AlGaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-μm wide (Such an AlGaN/GaN HEMT is denoted as AlGaN/GaN HEMT (10× 125 μm)). The improved large signal model simulates the I-V characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.
Keywords:  AlGaN/GaN HEMT      kink effect      tanh      EEHEMT model  
Received:  30 November 2013      Revised:  23 January 2014      Accepted manuscript online: 
PACS:  72.20.Ht (High-field and nonlinear effects)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61334002), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (Grant No. ZHD201206), and the Program for New Century Excellent Talents in University (Grant No. NCET-12-0915).
Corresponding Authors:  Ma Xiao-Hua     E-mail:  xhma@xidian.edu.cn

Cite this article: 

Cao Meng-Yi (曹梦逸), Lu Yang (卢阳), Wei Jia-Xing (魏家行), Chen Yong-He (陈永和), Li Wei-Jun (李卫军), Zheng Jia-Xin (郑佳欣), Ma Xiao-Hua (马晓华), Hao Yue (郝跃) An improved EEHEMT model for kink effect on AlGaN/GaN HEMT 2014 Chin. Phys. B 23 087201

[1] Kumar V, Lu W, Schwindt R, Kuliev A, Simin G, Yang J, Khan M A and Adesida Ilesanmi. 2002 IEEE Electron Dev. Lett. 23 455
[2] Gaska R, Chen Q, Yang J, Osinsky A, Khan M A and Shur M S 1997 IEEE Electron Dev. Lett. 18 492
[3] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 64th Device Research Conference, June 26-28, 2006, State College, Pennsylvania, USA, p. 151
[4] Quan S, Hao Y, Ma X H and Yu H Y 2011 Chin. Phys. B 20 018101
[5] Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 Chin. Phys. B 19 047301
[6] Ma X H, Ma J G, Yang L Y, He Q, Jiao Y, Ma P and Hao Y 2011 Chin. Phys. B 20 067304
[7] Enoki T, Kobayashi T and Ishii Y IEEE GaAs IC Symp., Technical Digest 1994, 16th Annual, Ocotober 16-19, 1994, Philadelphia, Pennsylvania, USA, p. 337
[8] Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W and Hao Y 2012 Acta Phys. Sin. 61 047301 (in Chinese)
[9] Anwar J and Gunter K 2007 IEEE International Conference on Signal Processing and Communications, 2007 ICSPC, November 24-27, 2007, Dubai, United Arab Emirate (UAE) p. 77
[10] Anwar J and Gunter K 2005 IEEE Transactions on Microwave Theory and Techniques 53 3440
[11] Qi D X, Zhang Y T, Ning J X and Xu J F 2011 Acta Mech. Solida Sin. 24 166
[1] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[2] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[3] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[4] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[5] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[6] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[7] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[8] Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs
Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升). Chin. Phys. B, 2017, 26(9): 098504.
[9] Low power fluorine plasma effects on electrical reliability of AlGaN/GaN high electron mobility transistor
Ling Yang(杨凌), Xiao-Wei Zhou(周小伟), Xiao-Hua Ma(马晓华), Ling Lv(吕玲), Yan-Rong Cao(曹艳荣), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(1): 017304.
[10] Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(8): 087304.
[11] Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate
Wei Mao(毛维), Ju-Sheng Fan(范举胜), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(12): 127305.
[12] Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates
Wei Mao(毛维), Wei-Bo She(佘伟波), Cui Yang(杨翠), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(1): 017303.
[13] Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor
Zhou Xing-Ye (周幸叶), Feng Zhi-Hong (冯志红), Wang Yuan-Gang (王元刚), Gu Guo-Dong (顾国栋), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2015, 24(4): 048503.
[14] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[15] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
No Suggested Reading articles found!