Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087305    DOI: 10.1088/1674-1056/23/8/087305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor

Mao Wei (毛维)a, She Wei-Bo (佘伟波)a, Yang Cui (杨翠)b, Zhang Chao (张超)a, Zhang Jin-Cheng (张进成)a, Ma Xiao-Hua (马晓华)b, Zhang Jin-Feng (张金风)a, Liu Hong-Xia (刘红侠)a, Yang Lin-An (杨林安)a, Zhang Kai (张凯)a, Zhao Sheng-Lei (赵胜雷)a, Chen Yong-He (陈永和)a, Zheng Xue-Feng (郑雪峰)a, Hao Yue (郝跃)a
a Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
b School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco-Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc.
Keywords:  analytical model of GaN-based field-plated HEMT      polarization effect      potential      electric field  
Received:  08 October 2013      Revised:  24 November 2013      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204085 and 61334002) and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051225013).
Corresponding Authors:  Mao Wei     E-mail:  mwxidian@126.com

Cite this article: 

Mao Wei (毛维), She Wei-Bo (佘伟波), Yang Cui (杨翠), Zhang Chao (张超), Zhang Jin-Cheng (张进成), Ma Xiao-Hua (马晓华), Zhang Jin-Feng (张金风), Liu Hong-Xia (刘红侠), Yang Lin-An (杨林安), Zhang Kai (张凯), Zhao Sheng-Lei (赵胜雷), Chen Yong-He (陈永和), Zheng Xue-Feng (郑雪峰), Hao Yue (郝跃) A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor 2014 Chin. Phys. B 23 087305

[1] Conti F and Conti M 1972 Solid-State Electron. 15 93
[2] Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron Dev. Lett. 21 421
[3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117
[4] Peng M Z, Zheng Y K, Luo W J and Liu X Y 2011 Solid-State Electron. 64 63
[5] Karmalkar S and Mishra U K 2001 Solid-State Electron. 45 1645
[6] Koudymov A, Adivarahan V, Yang J, Simin G and Asif Khan M 2005 IEEE Electron Dev. Lett. 26 704
[7] Horio K, Itagaki K and Nakajima A 2008 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China
[8] Brannick A, Zakhleniuk N A, Ridley B K, Shealy J R, Schaff W J and Eastman L F 2009 IEEE Electron Dev. Lett. 30 436
[9] Joh J and del Alamo J A 2006 IEEE International Electron Devices Meeting, San Francisco, CA, USA
[10] Joh J and del Alamo J A 2008 IEEE Electron Dev. Lett. 29 287
[11] Karmalkar S, Shur M S, Simin G and Asif Khan M 2005 IEEE Trans. Electron Dev. 52 2534
[12] Karmalkar S and Soudabi N 2006 IEEE Trans. Electron Dev. 53 2430
[13] Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Dev. Lett. 25 161
[14] Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 713
[15] Pei Y, Chen Z, Brown D, Keller S, Denbaars S P and Mishra U K 2009 IEEE Electron Dev. Lett. 30 328
[16] Kumar S P, Agrawal A, Chaujar R, Kabra S, Gupta M and Gupta R S 2007 Microelectronics J. 38 1013
[17] Kumar S P, Agrawal A, Chaujar R, Gupta M and Gupta R S 2008 Superlatt. Microstruc. 44 37
[18] Kumar S P, Agrawal A, Chaujar R, Gupta M and Gupta R S 2008 Microelectronics J. 39 1416
[19] ATLAS Device Simulator, Santa Clara, CA: SILVACO Int. 2010
[20] Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515
[21] Shealy J R, Prunty T R, Chumbes E M and Ridley B K 2003 J. Cryst. Growth 250 7
[22] Chung S K 2004 IEE Proceedings Science, Measurement & Technology 151 21
[23] Anwar A F M and Faraclas E W 2006 Solid-State Electron. 50 1041
[24] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
[25] Piprek J 2007 Nitride Semiconductor Devices: Principles and Simulation (Weinheim: Wiley-VCH).
[26] Mao W, Yang C, Hao Y, Ma X H, Wang C, Zhang J C, Liu H X, Bi Z W, Xu S R, Yang L A, Yang L, Zhang K, Zhang N Q and Pei Y 2011 Chin. Phys. B 20 097203
[27] Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T IEEE Trans. Electron Dev. 52 106
[28] Cao Y, Zimmermann T, Xing H L and Jena D 2010 Appl. Phys. Lett. 96 042102
[1] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[8] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[9] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[10] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[15] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
No Suggested Reading articles found!