Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 083302    DOI: 10.1088/1674-1056/23/8/083302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A simple encapsulation method for organic optoelectronic devices

Sun Qian-Qian (孙倩倩), An Qiao-Shi (安桥石), Zhang Fu-Jun (张福俊)
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
Abstract  The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells, have rapidly improved in the past decade. The stability of an organic optoelectronic device has become a key problem for further development. In this paper, we report one simple encapsulation method for organic optoelectronic devices with a parafilm, based on ternary polymer solar cells (PSCs). The power conversion efficiencies (PCE) of PSCs with and without encapsulation decrease from 2.93% to 2.17% and from 2.87% to 1.16% after 168-hours of degradation under an ambient environment, respectively. The stability of PSCs could be enhanced by encapsulation with a parafilm. The encapsulation method is a competitive choice for organic optoelectronic devices, owing to its low cost and compatibility with flexible devices.
Keywords:  organic optoelectronic devices      stability      encapsulation  
Received:  23 January 2014      Revised:  18 February 2014      Accepted manuscript online: 
PACS:  33.20.Kf (Visible spectra)  
  72.80.Rj (Fullerenes and related materials)  
  42.70.Jk (Polymers and organics)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2013JBZ004), the National Natural Science Foundation of China (Grant No. 61377029), and the Beijing Natural Science Foundation, China (Grant No. 2122050).
Corresponding Authors:  Zhang Fu-Jun     E-mail:  fjzhang@bjtu.edu.cn

Cite this article: 

Sun Qian-Qian (孙倩倩), An Qiao-Shi (安桥石), Zhang Fu-Jun (张福俊) A simple encapsulation method for organic optoelectronic devices 2014 Chin. Phys. B 23 083302

[1] He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S and Cao Y 2011 Adv. Mater. 23 4636
[2] Yu H Z and Peng J B 2008 Chin. Phys. B 17 3143
[3] Zhang F, Zhao D, Zhuo Z, Wang H, Xu Z and Wang Y 2010 Sol. Energy Mater. Sol. Cells 94 2416
[4] Jorgensen M, Norrman K, Gevorgyan S A, Tromholt T, Andreasen B and Krebs F C 2012 Adv. Mater. 24 580
[5] Gevorgyan S A, Jorgensen M and Krebs F C 2008 Sol. Energy Mater. Sol. Cells 92 736
[6] Morlier A, Cros S, Garandet J P and Alberola N 2013 Sol. Energy Mater. Sol. Cells 115 93
[7] Dennler G, Lungenschmied C, Neugebauer H, Sariciftci N, Latreche M, Czeremuszkin G and Wertheimer M 2006 Thin Solid Films 511 349
[8] Grüniger A, Bieder A, Sonnenfeld A, Von Rohr P R, Müller U and Hauert R 2006 Surf. Coat. Technol. 200 4564
[9] Park S Y, Seo H O, Kim K D, Lee J E, Kwon J D, Kim Y D and Lim D C 2012 Physica Status Solidi (RRL)-Rapid Research Letters 6 196
[10] Chang C Y, Chou C T, Lee Y J, Chen M J and Tsai F Y 2009 Org. Electron. 10 1300
[11] Lewis J 2006 Mater. Today 9 38
[12] Krebs F C 2006 Sol. Energy Mater. Sol. Cells 90 3633
[13] Zhang F J, Xu X W, Tang W H, Zang J, Zhuo Z L, Wang J, Wang J, Xu Z and Wang Y S 2011 Sol. Energy Mater. Sol. Cells 95 1785
[14] Lee H J, Kim H P, Kim H M, Youn J H, Nam D H, Lee Y G, Lee J G, Yusoff A B and Jang J 2013 Sol. Energy Mater. Sol. Cells 111 97
[15] An Q S, Zhang F J, Zhang J, Tang W H, Wang Z X, Li L L, Xu Z, Teng F and Wang Y S 2013 Sol. Energy Mater. Sol. Cells 118 30
[16] You H L and Zhang C F 2009 Chin. Phys. B 18 2096
[17] Xue J, Uchida S, Rand B P and Forrest S R 2004 Appl. Phys. Lett. 84 3013
[18] http://www.parafilm.com
[19] Yang H B, Song Q L, Gong C and Li C M 2010 Sol. Energy Mater. Sol. Cells 94 846
[20] Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley D D and Durrant J R 2006 Sol. Energy Mater. Sol. Cells 90 3520
[21] Seemann A, Egelhaaf H J, Brabec C J and Hauch JA 2009 Org. Electron. 10 1424
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!