Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070308    DOI: 10.1088/1674-1056/23/7/070308
GENERAL Prev   Next  

Ground state of rotating ultracold quantum gases with anisotropic spin–orbit coupling and concentrically coupled annular potential

Wang Xin (王鑫)a b, Tan Ren-Bing (谭仁兵)c, Du Zhi-Jing (杜志静)a, Zhao Wen-Yu (赵文宇)a b, Zhang Xiao-Fei (张晓斐)a, Zhang Shou-Gang (张首刚)a
a Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Department of Physics, School of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, China
Abstract  Motivated by recent experimental realization of synthetic spin-orbit coupling in neutral quantum gases, we consider the quasi-two-dimensional rotating two-component Bose-Einstein condensates with anisotropic Rashba spin-orbit coupling subject to concentrically coupled annular potential. For experimentally feasible parameters, the rotating condensate exhibits a variety of rich ground state structures by varying the strengths of the spin-orbit coupling and rotational frequency. Moreover, the phase transitions between different ground state phases induced by the anisotropic spin-orbit coupling are obviously different from the isotropic one.
Keywords:  Bose-Einstein condensate      spin-orbit coupling      quantum phase transition  
Received:  16 December 2013      Revised:  11 January 2014      Accepted manuscript online: 
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.30.Jp (Boson systems)  
  67.85.Fg (Multicomponent condensates; spinor condensates)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104064, 11303030, and 11174282), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61025023), the National Major Fund of Scientific Equipment and Instrument Development, China (Grant No. 61127901), the Key Project Fund of the Chinese Academy of Sciences for the "Western Light" Talent Cultivation Plan, and the Science and Technology Project of Shaanxi Province, China (Grant No. 2013KJXX-03).
Corresponding Authors:  Zhang Xiao-Fei     E-mail:  xfzhang@ntsc.ac.cn
About author:  03.75.Mn; 05.30.Jp; 67.85.Fg

Cite this article: 

Wang Xin (王鑫), Tan Ren-Bing (谭仁兵), Du Zhi-Jing (杜志静), Zhao Wen-Yu (赵文宇), Zhang Xiao-Fei (张晓斐), Zhang Shou-Gang (张首刚) Ground state of rotating ultracold quantum gases with anisotropic spin–orbit coupling and concentrically coupled annular potential 2014 Chin. Phys. B 23 070308

[1] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2010 Phys. Today 63 33
[4] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[5] Lin Y J, Compton R L, Jimnez-Garca K, Porto J V and Spielman I B 2009 Nature 462 628
[6] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[7] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[8] Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[9] Stanescu T D, Zhang C and Galitski V 2007 Phys. Rev. Lett. 99 110403
[10] Campbell D L, Juzeliunas G and Spielman I B 2011 Phys. Rev. A 84 025602
[11] Chapman M and Sá de Melo C 2011 Nature 471 41
[12] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
[13] Li Z D, Yao S F and Li Q Y 2011 Chin. Phys. B 20 110307
[14] Wu C J, Ian M S and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[15] Wu C and Zhang S C 2004 Phys. Rev. Lett. 93 036403
[16] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[17] Xu X Q and Han J H 2011 Phys. Rev. Lett. 107 200401
[18] Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[19] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[20] Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
[21] Liao R, Yu Y X and Liu W M 2012 Phys. Rev. Lett. 108 080406
[22] Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett. 108 125301
[23] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
[24] Zhou X F, Zhou J and Wu C 2011 Phys. Rev. A 84 063624
[25] Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604
[26] Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602
[27] Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C 2012 Phys. Rev. A 86 023601
[28] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
[29] Hu H and Liu X J 2012 Phys. Rev. A 85 013619
[30] Ozawa T and Baym G 2012 Phys. Rev. A 85 063623
[31] Zhou L, Pu H and Zhang W P 2013 Phys. Rev. A 87 023625
[32] Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
[33] Zezyulin D A, Driben R, Konotop V V and Malomed B A 2013 Phys. Rev. A 88 013607
[34] Zhang X F, Dong R F, Liu T, Liu W M and Zhang S G 2012 Phys. Rev. A 86 063628
[35] Zhang X F, Gao R S, Wang X, Dong R F, Liu T and Zhang S G 2013 Phys. Lett. A 377 1109
[36] Zhang X F, Li B and Zhang S G 2013 Laser Phys. 23 105501
[37] Brand J, Haigh T J and Zülicke U 2009 Phys. Rev. A 80 011602
[38] Smyrnakis J, Bargi S, Kavoulakis G M, Magiropoulos M, Kärkkäinen K and Reimann S M 2009 Phys. Rev. Lett. 103 100404
[39] Malet F, Kavoulakis G M and Reimann S M 2010 Phys. Rev. A 81 013630
[40] Bao W Z and Tang W J 2003 J. Comput. Phys. 187 230
[41] Bao W Z and Shen J 2004 SIAM J. Sci. Comput. 25 1674
[42] Merhasin I, Malomed B A and Driben R 2005 J. Phys. B 38 877
[43] Wen L, Liu W M, Cai Y, Zhang J M and Hu J 2012 Phys. Rev. A 85 043602
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[9] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[10] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[11] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[12] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[13] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[14] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[15] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
No Suggested Reading articles found!