Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 075210    DOI: 10.1088/1674-1056/23/7/075210
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation

Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军)
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
Abstract  The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actuation is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the interaction. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.
Keywords:  shock      boundary layer      plasma      flow control  
Received:  17 December 2013      Revised:  07 March 2014      Accepted manuscript online: 
PACS:  52.50.Nr (Plasma heating by DC fields; ohmic heating, arcs)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  47.80.Jk (Flow visualization and imaging)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51336011) and the National Natural Science Foundation of China (Grant Nos. 51207169 and 51276197).
Corresponding Authors:  Sun Quan     E-mail:  steve5761@126.com
About author:  52.50.Nr; 52.80.Mg; 47.80.Jk

Cite this article: 

Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军) Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation 2014 Chin. Phys. B 23 075210

[1] Dussauge J P, Dupont P and Debieve J F 2006 Aerospace Sci. Tech. 10 85
[2] Andrew P L and Werner J A 2011 Exp. Fluids 50 89
[3] Roth J R 2003 Phys. Plasmas 5 2117
[4] Enloe C L, McLaughlin T E and VanDyken R D 2004 AIAA J. 42 589
[5] Porter C O, Baughn J W and McLaughlin 2007 AIAA J. 45 1562
[6] Post M L and Corke T C 2006 AIAA J. 44 3125
[7] Ni G H, Meng Y D, Cheng C and Lan Y 2010 Chin. Phys. Lett. 27 055203
[8] Pan W X, Li T, Meng X, Chen X and Wu C K 2005 Chin. Phys. Lett. 22 2895
[9] Li L C and Xia W D 2008 Chin. Phys. B 17 649
[10] Webb N, Clifford C and Samimy M 2013 51^rd AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 7-10, 2013 Texas, USA
[11] Webb N, Clifford C and Samimy M 2012 6^rd AIAA Flow Control Conference, June 25-28, 2012 New Orleans, USA
[12] Webb N, Clifford C and Samimy M 2011 41^rd AIAA Fluid Dynamics Conference and Exhibit, June 27-30, 2011 Hawaii, USA
[13] Narayanaswamy V, Raja L L and Clemens 2012 Phys. Fluids 24 076101
[14] Kalra C S, Zaidi S, Scheider M N and Miles R B 2009 47rd AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 5-8, 2009 Florida, USA
[15] Nishihara M D and Adamovich I V 2013 51rd AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 7-10, 2013 Texas, USA
[16] Sun Q, Cheng B Q and Li Y H 2013 Plasma Sci. Technol. 15 908
[17] Sun Q, Cheng B Q and Li Y H 2013 Sci. China-Technol. Sci. 56 795
[18] Wang J, Li Y H and Xing F 2009 J. Appl. Phys. 106 03307
[19] Shang J S, Hankey W L and Law C H 1976 AIAA J. 14 1451
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[6] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[7] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[8] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[9] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[10] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[11] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[12] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[13] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[14] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[15] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
No Suggested Reading articles found!