Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078904    DOI: 10.1088/1674-1056/23/7/078904
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Row-column visibility graph approach to two-dimensional landscapes

Xiao Qin (肖琴)a, Pan Xue (潘雪)a, Li Xin-Li (李信利)a b, Mutua Stephena c, Yang Hui-Jie (杨会杰)a, Jiang Yan (蒋艳)a, Wang Jian-Yong (王建勇)d, Zhang Qing-Jun (张庆军)e
a Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
b Logistic School, Linyi University, Jinan 276000, China;
c Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya;
d Department of Physics, Xingtai College, Xingtai 054001, China;
e Analysis and Testing Center, Hebei Polytechnic University, Tangshan 063009, China
Abstract  A new concept, called the row-column visibility graph, is proposed to map two-dimensional landscapes to complex networks. A cluster coverage is introduced to describe the extensive property of node clusters on a Euclidean lattice. Graphs mapped from fractals generated with the probability redistribution model behave scale-free. They have pattern-induced hierarchical organizations and comparatively much more extensive structures. The scale-free exponent has a negative correlation with the Hurst exponent, however, there is no deterministic relation between them. Graphs for fractals generated with the midpoint displacement model are exponential networks. When the Hurst exponent is large enough (e.g., H>0.5), the degree distribution decays much more slowly, the average coverage becomes significant large, and the initially hierarchical structure at H<0.5 is destroyed completely. Hence, the row-column visibility graph can be used to detect the pattern-related new characteristics of two-dimensional landscapes.
Keywords:  row-column visibility graph      landscape      roughness  
Received:  27 December 2013      Revised:  02 January 2014      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  05.50.+q (Lattice theory and statistics)  
  05.45.Df (Fractals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975099), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 13YZ072), the Shanghai Leading Discipline Project, China (Grant No. XTKX2012), and the Innovation Fund Project for Graduate Students of Shanghai, China (Grant No. JWCXSL1302).
Corresponding Authors:  Yang Hui-Jie     E-mail:  hjyang@ustc.edu.cn
About author:  89.75.Hc; 72.15.Rn; 05.50.+q; 05.45.Df

Cite this article: 

Xiao Qin (肖琴), Pan Xue (潘雪), Li Xin-Li (李信利), Mutua Stephen, Yang Hui-Jie (杨会杰), Jiang Yan (蒋艳), Wang Jian-Yong (王建勇), Zhang Qing-Jun (张庆军) Row-column visibility graph approach to two-dimensional landscapes 2014 Chin. Phys. B 23 078904

[1] Anfinsen C B 1973 Science 181 223
[2] Baldwin R L and Rose G D 1999 Trends Biochem. Sci. 24 26
[3] Anderson P W 1958 Phys. Rev. 109 1492
[4] Lee P A and Ramakrishnan T V 1958 Rev. Mod. Phys. 57 287
[5] Kohmoto M, Sutherland B and Tang C 1987 Phys. Rev. B 35 1020
[6] Albuquerque E L and Cottam M G 2003 Phys. Rep. 376 225
[7] Yang H, Zhao F, Qi L and Hu B 2004 Phys. Rev. E 69 066104
[8] Zhao F, Yang H and Wang B 2005 Phys. Rev. E 72 046119
[9] Yang H, Zhao F and Wang B 2006 Physica A 364 544
[10] Yang H, Zhao F and Wang B 2006 Chaos 16 043112
[11] Yang H, Zhu G, Yin C and Li B 2008 Phys. Rev. E 77 045101
[12] Zhu G, Yang H, Yin C and Li B 2008 Phys. Rev. E 77 066113
[13] Einstein A 1905 Ann Physics 17 549
[14] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[15] Sokolov I M and Klafter J 2005 Chaos 15 026103
[16] Klafter J and Sokolov I M 2005 Phys. World 18 29
[17] Brockmann D, Hufnagel L and Geisel T 2006 Nature 439 462
[18] Klages R, Radons G and Sokolov I M 2008 Anomalous Transport: Foundations and Applications (Weinheim: VCH Wiley)
[19] Scher H and Montroll E W 1975 Phys. Rev. B 12 2455
[20] Wong I Y, Gardel M L, Reichmann D R, Weeks E R, Valentine M T, Bausch A R and Weitz D A 2004 Phys. Rev. Lett. 92 178101
[21] Dentz M, Cortis A, Scher H and Berkowitz B 2004 Adv. Water Resources 27 155
[22] Kosztolowicz T, Dworecki K and Mrowczynski S 2005 Phys. Rev. Lett. 94 170602
[23] Banks D S and Fradin C 2005 Biophys. J. 89 2960
[24] Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
[25] Zimmermann W, Sesselberg M and Petruccione F 1993 Phys. Rev. E 48 2699
[26] Zimmermann W, Painter B and Behringer R 1998 Eur. Phys. J. B 5 575
[27] Sokolov I M, Schmidt G W and Sagues F 2006 Phys. Rev. E 73 031102
[28] Alonso S, Kapral R and M. Bär 2009 Phys. Rev. Lett. 102 238302
[29] Viscek T, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[30] Schweitzer F, Tilch B and Ebeling W 1998 Phys. Rev. Lett. 80 5044
[31] Dan D and Jayannavar A M 2002 Phys. Rev. E 66 041106
[32] Dunkel J and Hänggi P 2005 Phys. Rev. E 71 016124
[33] Lindner B 2007 New J. Phys. 9 136
[34] Burgis M, Schaller V, Glässl M, Kaiser B, Köhler W, Krekhov A and Zimmermann W 2010 arXiv:1010.3115v1[cond-mat.stat-mech]
[35] Ivanov P CH, Amaral L A N, Goldberger A L, Havlin S, Rosenblum M G, Struzik Z R and Stanley H E 1999 Nature 399 461
[36] Li B and Wu Z 1993 Phys. Rev. B 47 3638
[37] http://en.wikipedia.org/wiki/Visibility_graph
[38] Lacasa L, Luque B, Bllesteros F, Luque J and Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 4972
[39] Lacasa L, Luque B, Luque J and Nuno J C 2009 Europhys. Lett. 86 30001
[40] Ni X, Jiang Z and Zhou W 2009 Phys. Lett. A 373 3822
[41] Luque B, Lacasa L, Ballesteros F and Luque J 2009 Phys. Rev. E 80 046103
[42] Yang Y, Wang J, Yang H and Mang J 2009 Physica A 388 4431
[43] Shao Z 2010 Appl. Phys. Lett. 96 073703
[44] Zhao D and Li X 2010 Appl. Phys. Lett. 96 266101
[45] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[46] Newman M E J 2005 Contemp. Phys. 46 323
[47] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Review 51 661
[48] Barabasi A L, Ravasz E and Vicsek T 2001 Physica A 299 559
[49] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 65 066122
[50] Jung S, Kim S and Kahng B 2002 Phys. Rev. E 65 056101
[51] Vazquez A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 066130
[52] Ravasz E, Somera A L, Mongru D A, Oltvai Z N and Barabasi A L 2002 Science 297 1551
[53] Vazquez A 2003 Phys. Rev. E 67 056104
[54] Sun X and Wu Z 2001 Acta Phys. Sin. 50 2126 (in Chinese)
[55] Fournier A, Fussel D and Carpenter L 1982 Communications of the ACM 25 371
[56] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
[57] Zhang J, Luo X, Nakamura T, Sun J and Small M 2007 Phys. Rev. E 75 016218
[58] Xu X, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[59] Zhang J, Sun J, Luo X, Zhang K, Nakamura T and Small M 2008 Physica D 237 2856
[60] Yang Y and Yang H 2008 Physica A 387 1381
[61] Hirata Y, Horai S and Aihara K 2008 Eur. Phys. J. Spec. Top. 164 13
[62] Haraguchi Y, Shimada Y, Ikeguchi T and Aihara K 2009 ICANN 2009, Part Ⅱ, LNCS 5769 325
[63] Wang J and Yang H 2009 Mod. Phys. Lett. B 23 1781
[64] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
[65] Donner R V, Small M, Donges J F, Marwan N, Zou Y, Xiang R and Kurths J 2011 Int. J. Bifurcation Chaos 21 1019
[66] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 Phys. Rev. E 81 015101
[67] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[68] Sinatra R, Condorelli D and Latora V 2010 Phys. Rev. Lett. 105 178702
[69] Xie W and Zhou W 2011 Physica A 390 3592
[70] Qi J, Wang J, Wang J, Xiao Q and Yang H 2011 Fluctuation and Noise Letters 10 371
[1] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[2] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[3] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[4] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[5] The landscape and flux of a minimum network motif, Wu Xing
Kun Zhang(张坤), Ashley Xia(夏月), and Jin Wang(汪劲). Chin. Phys. B, 2020, 29(12): 120504.
[6] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[7] Wetting failure condition on rough surfaces
Feng-Chao Yang(杨冯超), Xiao-Peng Chen(陈效鹏). Chin. Phys. B, 2019, 28(4): 044701.
[8] Measurement and analysis of the surface roughness of Ag film used in plasmonic lithography
Gao-Feng Liang(梁高峰), Jiao Jiao(焦蛟), Xian-Gang Luo(罗先刚), Qing Zhao(赵青). Chin. Phys. B, 2017, 26(1): 016801.
[9] Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: Landscape, flux, and path perspectives
Han Yan(闫晗), Kun Zhang(张坤), Jin Wang(汪劲). Chin. Phys. B, 2016, 25(7): 078702.
[10] Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux
Li Xu(徐丽), Xiakun Chu(楚夏昆), Zhiqiang Yan(晏致强), Xiliang Zheng(郑喜亮), Kun Zhang(张坤), Feng Zhang(张锋), Han Yan(闫晗), Wei Wu(吴畏), Jin Wang(汪劲). Chin. Phys. B, 2016, 25(1): 016401.
[11] Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique
Tianmin Wu (吴天敏), Tianjun Wang (王天骏), Xian Chen(陈娴), Bin Fang(方彬), Ruiting Zhang(张睿挺), Wei Zhuang(庄巍). Chin. Phys. B, 2016, 25(1): 018201.
[12] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[13] Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells
Wang Wei-Ying (王维颖), Liu Gui-Peng (刘贵鹏), Jin Peng (金鹏), Mao De-Feng (毛德丰), Li Wei (李维), Wang Zhan-Guo (王占国), Tian Wu (田武), Chen Chang-Qing (陈长清). Chin. Phys. B, 2014, 23(11): 117803.
[14] Impact of nitrogen plasma passivation on the interface of germanium MOS capacitor
Yun Quan-Xin (云全新), Li Ming (黎明), An Xia (安霞), Lin Meng (林猛), Liu Peng-Qiang (刘朋强), Li Zhi-Qiang (李志强), Zhang Bing-Xin (张冰馨), Xia Yu-Xuan (夏宇轩), Zhang Hao (张浩), Zhang Xing (张兴), Huang Ru (黄如), Wang Yang-Yuan (王阳元). Chin. Phys. B, 2014, 23(11): 118504.
[15] Electron mobility limited by surface and interface roughness scatterings in AlxGa1-xN/GaN quantum wells
Wang Jian-Xia (王建霞), Yang Shao-Yan (杨少延), Wang Jun (王俊), Liu Gui-Peng (刘贵鹏), Li Zhi-Wei (李志伟), Li Hui-Jie (李辉杰), Jin Dong-Dong (金东东), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(7): 077305.
No Suggested Reading articles found!