Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077302    DOI: 10.1088/1674-1056/23/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Efficiency of electrical manipulation in two-dimensional topological insulators

Pang Mi (庞蜜), Wu Xiao-Guang (吴晓光)
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We investigate the efficiency of electrical manipulation in a two-dimensional topological insulator by inspecting the electronic states of a lateral electrical potential superlattice in the system. The spatial distribution of the electron density in the system can be tuned by changing the strength of the externally applied lateral electrical superlattice potential. This provides us the information about how efficiently one can manipulate the electron motion inside a two-dimensional topological insulator. Such information is important in designing electronic devices, e.g., an electric field effect transistor made of the topological insulator. The electronic states under various conditions are examined carefully. It is found that the dispersion of the mini-band and the electron distribution in the potential well region both display an oscillatory behavior as the potential strength of the lateral superlattice increases. The probability of finding an electron in the potential well region can be larger or smaller than the average as the potential strength varies. These features can be attributed to the coupled multiple-band nature of the topological insulator. In addition, it is also found that these behaviors are not sensitive to the gap parameter of the two-dimensional topological insulator model. Our study suggests that the electron density manipulation via electrical gating in a two-dimensional topological insulator is less effective and more delicate than that in a traditional single-band semiconductor.
Keywords:  topological insulator      lateral potential superlattice      electrical manipulation  
Received:  14 December 2013      Revised:  22 January 2014      Accepted manuscript online: 
PACS:  73.21.Cd (Superlattices)  
  73.22.Dj (Single particle states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076092 and 61290303).
Corresponding Authors:  Pang Mi     E-mail:  pangmi@semi.ac.cn
About author:  73.21.Cd; 73.22.Dj

Cite this article: 

Pang Mi (庞蜜), Wu Xiao-Guang (吴晓光) Efficiency of electrical manipulation in two-dimensional topological insulators 2014 Chin. Phys. B 23 077302

[1] Zhang S C 2008 Physics 1 6
[2] Qi X L and Zhang S C 2010 Physics Today 63 33
[3] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[4] Moore J E 2010 Nature 464 194
[5] Yu R, Fang Z and Dai X 2011 Physics 40 462
[6] Ye F and Su G 2010 Physics 39 564
[7] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[8] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[9] Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960
[10] Cheng P, Zhang T, He K, Cheng X, Ma X C and Xue Q K 2011 Physics 40 449
[11] Zhang L B, Chang K, Xie X C, Buhmann H and Molenkamp L W 2010 New J. Phys. 12 083058
[12] Zhang L B, Zhai F and Chang K 2010 Phys. Rev. B 81 235323
[13] Jiang Z F, Chu R L and Shen S Q 2010 Phys. Rev. B 81 115322
[14] Zhang L B, Cheng F, Zhai F and Chang K 2011 Phys. Rev. B 83 081402
[15] Dolcini F 2011 Phys. Rev. B 83 165304
[16] Citro R, Romeo F and Andrei N 2011 Phys. Rev. B 84 161301
[17] Zhang D and Ting C S 2012 Phys. Rev. B 85 115434
[18] Michetti P, Budich J C, Novik E G and Recher P 2012 Phys. Rev. B 85 125309
[19] Wang J, Chen X, Zhu B F and Zhang S C 2012 Phys. Rev. B 85 235131
[20] Romeo F, Citro R, Ferraro D and Sassetti M 2012 Phys. Rev. B 86 165418
[21] Yokoyama T, Balatsky A V and Nagaosa N 2010 Phys. Rev. Lett. 104 246806
[22] Gao J H, Yuan J, Chen W Q, Zhou Y and Zhang F C 2011 Phys. Rev. Lett. 106 057205
[23] Chang K 2011 Physics 40 458
[24] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[25] Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
[26] Li J, Chu R L, Jain J K and Shen S Q 2009 Phys. Rev. Lett. 102 136806
[27] Chang K and Lou W K 2011 Phys. Rev. Lett. 106 206802
[28] Krueckl V and Richter K 2011 Phys. Rev. Lett. 107 086803
[29] Schmidt M J, Novik E G, Kindermann M and Trauzettel B 2009 Phys. Rev. B 79 241306
[30] Novik E G, Recher P, Hankiewicz E M and Trauzettel B 2010 Phys. Rev. B 81 241303
[31] Krueckl V and Richter K 2012 Phys. Rev. B 85 115433
[32] Takagaki Y 2012 Phys. Rev. B 85 155308
[33] Zhang D, Lou W K, Miao M S, Zhang S C and Chang K 2013 Phys. Rev. Lett. 111 156402
[34] Dombey N and Calogeracos A 1999 Physics Reports 315 41
[35] Masir M R, Vasilopoulos P and Peeters F M 2010 J. Phys.: Condens. Matter 22 465302
[36] Colak S and Shahzad K 1988 Phys. Rev. B 38 9667
[37] Zhang F C, Dai N, Luo H, Samarth N, Dobrowolska M, Furdyna J K and Ram-Mohan L R 1992 Phys. Rev. Lett. 68 3220
[38] Zhang F C, Luo H, Dai N, Samarth N, Dobrowolska M and Furdyna J K 1993 Phys. Rev. B 47 3806
[39] Tseng S M, Chen Y F, Cheng Y T, Hsu C W, Huang Y S and Lin D Y 2001 Phys. Rev. B 64 195311
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[3] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[6] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[7] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[8] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[9] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[14] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[15] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
No Suggested Reading articles found!