Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 076102    DOI: 10.1088/1674-1056/23/7/076102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals

Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁)
State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne-hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation-induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene-hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.
Keywords:  silicon nanocrystals      hydrosilylation      quantum confinement      surface chemistry  
Received:  24 September 2013      Revised:  09 January 2014      Accepted manuscript online: 
PACS:  61.46.Hk (Nanocrystals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  12.38.Aw (General properties of QCD (dynamics, confinement, etc.))  
  47.55.dr (Interactions with surfaces)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632101), the National Natural Science Foundation of China for Excellent Young Researchers (Grant No. 61222404), the Research and Development Program of Ministry of Education of China (Grant No. 62501040202), and the 2012 UAlberta MOST Joint Research Laboratories Program, China.
Corresponding Authors:  Yang De-Ren     E-mail:  mseyang@zju.edu.cn
About author:  61.46.Hk; 71.15.Mb; 12.38.Aw; 47.55.dr

Cite this article: 

Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁) Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals 2014 Chin. Phys. B 23 076102

[1] Williamson A J, Grossman J C, Hood R Q, Puzder A and Galli G 2002 Phys. Rev. Lett. 89 196803
[2] Pi X D, Liptak R W, Nowak J D, Pwells N, Carter C B, Campbell S A and Kortshagen U 2008 Nanotechnology 19 245603
[3] Nunez J R R, Kelly J A, Henderson E J and Veinot J G C 2012 Chem. Mater. 24 346
[4] Zhang X H, Dong J C, Wang Y, Li L and Li H 2013 J. Phys. Chem. C 117 12958
[5] Mastronardi M L, Maier-Flaig F, Faulkner D, Henderson E J, Kübel C, Lemmer U and Ozin G A 2012 Nano Lett. 12 337
[6] Dong J C and Li H 2012 J. Phys. Chem. C 116 17259
[7] Hua F J, Swihart M T and Ruckenstein E 2005 Langmuir 21 6054
[8] Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B and Paillard V 2000 Phys. Rev. B 62 15942
[9] Kovalev D and Fujii M 2005 Adv. Mater. 17 2531
[10] Ni Z Y, Pi X D and Yang D 2012 Chin. Phys. Lett. 29 077801
[11] Vasiliev I, Öğüt S and Chelikowsky J R 2001 Phys. Rev. Lett. 86 1813
[12] Cullis A 1997 J. Appl. Phys. 82 909
[13] Delerue C, Allan G and Lannoo M 1993 Phys. Rev. B 48 11024
[14] Zunger A and Wang L W 1996 Appl. Surf. Sci. 102 350
[15] Kortshagen U 2009 J. Phys. D: Appl. Phys. 42 113001
[16] Veinot J G C 2006 Chem. Commun. 4160
[17] Li X G, He Y Q, Talukdar S S and Swihart M T 2003 Langmuir 19 8490
[18] Bley R A and Kauzlarich S M 1996 J. Am. Chem. Soc. 118 12461
[19] Pi X D, Zalloum O H Y, Wojcik J, Knights A P, Mascher P, Todd A D W and Simpson P J. 2005 J. Appl. Phys. 97 096108
[20] Gresback R, Nozaki T and Okazaki K 2011 Nanotechnology 22 305605
[21] Gupta A, Swihart M T and Wiggers H 2009 Adv. Funct. Mater. 19 696
[22] Mastronardi M L, Henderson E J, Puzzo D P and Ozin G A 2012 Adv. Mater. 24 5890
[23] Martínez A, Alonso J C, Sansores L E and Salcedo R 2010 J. Phys. Chem. C 114 12427
[24] Zhou Z, Brus L and Friesner R 2003 Nano Lett. 3 163
[25] Reboredo F A, Schwegler E and Galli G 2003 J. Am. Chem. Soc. 125 15243
[26] Pi X D 2012 J. Nanomater. 2012 912903
[27] Ma Y S, Chen X B, Pi X D and Yang D 2011 J. Phys. Chem. C 115 12822
[28] Zhang R Q, Li Q S, Lee S T, Niehaus T A and Frauenheim T 2008 J. Chem. Phys. 128 244714
[29] Puzder A, Williamson A J, Grossman J C and Galli G 2002 Phys. Rev. Lett. 88 097401
[30] Chao Y, Houlton A, Horrocks B R, Hunt M R C, Poolton N R J, Yang J and Siller L 2006 Appl. Phys. Lett. 88 263119
[31] Coxon P R, Wang Q and Chao Y 2011 J. Phys. D: Appl. Phys. 44 495301
[32] Belomoin G, Rogozhina E, Therrien J, Braun P V, Abuhassan L, Nayfeh M H, Wagner L and Mitas L 2002 Phys. Rev. B 65 193406
[33] Puzder A, Williamson A J, Grossman J C and Galli G 2002 J. Chem. Phys. 117 6721
[34] He Y, Su Y, Yang X, Kang Z, Xu T, Zhang R, Fan C and Lee S T 2009 J. Am. Chem. Soc. 131 4434
[35] Chen X B, Pi X D and Yang D 2010 J. Phys. Chem. C 114 8774
[36] Ma Y S, Pi X D and Yang D 2012 J. Phys. Chem. C 116 5401
[37] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197
[38] Gole J L, Veje E, Egeberg R G, Ferreira da Silva A, Pepe I and Dixon D A 2006 J. Phys. Chem. B 110 2064
[39] Qin C J, Huang W Q, Wang H X and Jin F 2008 Chin. Phys. B 17 3753
[40] Liu S R, Qin C J, Huang W Q, Xu L, Wang H X, Jin F, Wu K Y and Qin S J 2008 Chin. Phys. B 17 1817
[41] Wang R, Pi X D and Yang D 2012 J. Phys. Chem. C 116 19434
[42] Chen X B, Pi X D and Yang D 2011 J. Phys. Chem. C 115 661
[43] Pi X D, Chen X B, Ma Y S and Yang D 2011 Nanoscale 3 4584
[44] Jariwala B N, Dewey O S, Stradins P, Ciobanu C V and Agarwal S 2011 ACS Appl. Mater. Inter. 3 3033
[45] Calder S, Boies A, Lei P Y, Girshick S and Roberts J 2011 Chem. Mater. 23 2917
[46] Pi X D, Chen X B and Yang D 2011 J. Phys. Chem. C 115 9838
[1] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
[2] Band structure of silicon and germanium thin films based on first principles
Xue-Ke Wu(吴学科), Wei-Qi Huang(黄伟其), Zhong-Mei Huang(黄忠梅), Chao-Jian Qin(秦朝建), Tai-Ge Dong(董泰阁), Gang Wang(王刚), Yan-Lin Tang(唐延林). Chin. Phys. B, 2017, 26(3): 037302.
[3] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[4] Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2016, 25(8): 086502.
[5] Different charging behaviors between electrons and holes in Si nanocrystals embedded in SiNx matrix by the influence of near-interface oxide traps
Fang Zhong-Hui (方忠慧), Jiang Xiao-Fan (江小帆), Chen Kun-Ji (陈坤基), Wang Yue-Fei (王越飞), Li Wei (李伟), Xu Jun (徐骏). Chin. Phys. B, 2015, 24(1): 017305.
[6] Introduction to ChinaNANO 2013
Wei Zhi-Xiang (魏志祥), Zhu Xing (朱星). Chin. Phys. B, 2014, 23(8): 088101.
[7] Silicon nanoparticles:Preparation, properties, and applications
Chang Huan (常欢), Sun Shu-Qing (孙树清). Chin. Phys. B, 2014, 23(8): 088102.
[8] From self-assembly to quantum guiding:A review of magnetic atomic structures on noble metal surfaces
Cao Rong-Xing (曹荣幸), Zhang Xiao-Pu (张孝谱), Miao Bing-Feng (缪冰锋), Sun Liang (孙亮), Wu Di (吴镝), You Biao (游彪), Ding Hai-Feng (丁海峰). Chin. Phys. B, 2014, 23(3): 038102.
[9] Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET
Zahra Ahangari, Morteza Fathipour. Chin. Phys. B, 2013, 22(9): 098502.
[10] Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs
Jiang Xiang-Wei(姜向伟) and Li Shu-Shen(李树深) . Chin. Phys. B, 2012, 21(2): 027304.
[11] Multipeak-structured photoluminescence mechanisms of as-prepared and oxidized Si nanoporous pillar arrays
Xu Hai-Jun(许海军), Chan Yu-Fei(廛宇飞), and Su Lei(苏雷) . Chin. Phys. B, 2011, 20(10): 107801.
[12] Photoluminescence and transmission spectra of nanocrystalline GaAs1-xSbx embedded in silica films
Liu Fa-Min (刘发民), Zhang Li-De (张立德), Li Guo-Hua (李国华). Chin. Phys. B, 2005, 14(10): 2145-2148.
[13] Quantum confinement analysis of nanostructures in oxidation of SiGe alloys
Huang Wei-Qi (黄伟其), Liu Shi-Rong (刘世荣). Chin. Phys. B, 2004, 13(7): 1163-1166.
[14] Numerical simulation of dispersion generated by a 180° turn in a microchannel
Yao Zhao-Hui (姚朝晖), G. L. Yoder, C. T. Culbertson, J. M. Ramsey. Chin. Phys. B, 2002, 11(3): 226-232.
No Suggested Reading articles found!