Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070307    DOI: 10.1088/1674-1056/23/7/070307
GENERAL Prev   Next  

Adiabatic tunneling of Bose-Einstein condensates with modulated atom interaction in a double-well potential

Xin Xiao-Tian (辛晓天), Huang Fang (黄芳), Xu Zhi-Jun (徐志君), Li Hai-Bin (李海彬)
Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  We study the adiabatic tunneling of Bose-Einstein condensates in a symmetric double-well potential when the interaction strength between the atoms is modulated linearly or in a cosine periodic form. It is shown that the system evolves along a nonlinear eigenstate path. In the case of linear modulation under the adiabatic approximation conditions, the tunneling probability of the condensate atoms to the other potential well is half. However, when the system is periodically scanned in the adiabatic process, we find an interesting phenomenon. A small change in the cycle period can lead to the condensate atoms returning to the right well or tunneling to the left well. The system comes from a linear eigenstate back to a nonlinear one, which is completely different from the linear eigenstate evolution. We explain the results by using the energy level and the phase diagram.
Keywords:  adiabatic tunneling      Bose-Einstein condensates      double-well potential  
Received:  04 November 2013      Revised:  30 December 2013      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Corresponding Authors:  Li Hai-Bin     E-mail:  hbli@zjut.edu.cn
About author:  03.75.Kk; 03.75.Lm

Cite this article: 

Xin Xiao-Tian (辛晓天), Huang Fang (黄芳), Xu Zhi-Jun (徐志君), Li Hai-Bin (李海彬) Adiabatic tunneling of Bose-Einstein condensates with modulated atom interaction in a double-well potential 2014 Chin. Phys. B 23 070307

[1] Pethick C J and Smith H 2001 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[2] Dalfovo F, Giorgini S, Pitaevskii L and Stringari S 1999 Rev. Mod. Phys. 71 463
[3] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[4] Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[5] Shin Y, Saba M, Schirotzek A, Pasquini T A, Leanhardt A E, Pritchard D E and Ketterle W 2004 Phys. Rev. Lett. 92 150401
[6] Hall B V, Whitlock S, Anderson R, Hannaford P and Sidorov A I 2007 Phys. Rev. Lett. 98 030402
[7] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950
[8] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[9] Wu B and Niu Q 2000 , Phys. Rev. A 61 023402
[10] Liu J, Wu B and Niu Q 2003 Phys. Rev. Lett. 90 170404
[11] Liu J, Fu L B, Ou B Y, Chen S G, Choi D I and Niu Q 2002 Phys. Rev. A 66 023404
[12] Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619
[13] Yang L Y, Fu L B and Liu J 2009 Laser Phys. 19 4 678
[14] Graefe E M, Korsch H J and Witthaut D 2006 Phys. Rev. A 73 013617
[15] Huang F and Li H B 2011 Acta Phys. Sin. 60 020303 (in Chinese)
[16] Ye D F, Fu L B and Liu J 2008 Phys. Rev. A 77 013402
[17] Ye D F, Fu L B, Zhao H and Liu J 2007 Acta Phys. Sin. 56 5071 (in Chinese)
[18] Wang S and Yang Z A 2009 Acta Phys. Sin. 58 729 (in Chinese)
[19] Xi Y D, Wang D L, She Y C, Wang F J and Ding J W 2010 Acta Phys. Sin. 59 3720 (in Chinese)
[20] Zhang H, Wang W Y, Meng H J, Ma Y, Ma Y Y and Duan W S 2013 Acta Phys. Sin. 62 110305 (in Chinese)
[21] Pitaevskii L and Stringari S 2003 Bose-Einstein Condensation (Oxford: Oxford University Press)
[22] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[23] Bauer D M, Lettner M, Vo C, Rempe G and Durr S 2009 Nat. Phys. 5 339
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[3] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[4] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[5] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[6] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[7] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[8] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[9] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[10] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[11] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[12] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[13] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[14] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[15] Energy sharing induced by the nonlinear interaction
Yuan Liu(刘渊), Zhifang Feng(冯志芳), Weidong Li(李卫东). Chin. Phys. B, 2017, 26(1): 013401.
No Suggested Reading articles found!