Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040704    DOI: 10.1088/1674-1056/23/4/040704
GENERAL Prev   Next  

A study of transition from n-to p-type based on hexagonal WO3 nanorods sensor

Wu Ya-Qiao (武雅乔), Hu Ming (胡明), Wei Xiao-Ying (韦晓莹)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 ℃ using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH=2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 ℃-250 ℃. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 ℃, whereas, it behaves as a p-type semiconductor below 50 ℃. The origin of the n-to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.
Keywords:  hexagonal      WO3 nanorods sensor      hydrothermal method      n-to p-type transition  
Received:  06 July 2013      Revised:  17 October 2013      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  61.62.Fk  
  78.67.Qa (Nanorods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019, 61271070, and 61274074) and the Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300).
Corresponding Authors:  Hu Ming     E-mail:  huming@tju.edu.cn
About author:  07.07.Df; 61.62.Fk; 78.67.Qa

Cite this article: 

Wu Ya-Qiao (武雅乔), Hu Ming (胡明), Wei Xiao-Ying (韦晓莹) A study of transition from n-to p-type based on hexagonal WO3 nanorods sensor 2014 Chin. Phys. B 23 040704

[1] Wongchoosuk C, Wisitsoraat A, Phokharatkul D, Horprathum M, Tuantranont A and Kerdcharoen T 2013 Sens. Actuators B 181 388
[2] He J, Su Y M, Ma Y T, Chen Q, Wang R N, Ye Y, Ma Y and Liang H L 2012 Chin. Phys. B 21 076104
[3] Xia L, Zhong K, Song Y, Lu X, Xu L S, Yan Y, Li H D, Yuan F L, Jiang J Z, Yu D P and Zhang S L 2012 Chin. Phys. B 21 097801
[4] Afzal A, Cioffi N, Sabbatini L and Torsi L 2012 Sens. Actuators B 171-172 25
[5] You L, Sun Y F, Ma J, Guan Y, Sun J M, Du Y and Lu G Y 2011 Sens. Actuators B 157 401
[6] Qin Y X, Hu M and Zhang J 2010 Sens. Actuators B 150 339
[7] Zhang C, Debliquy M, Boudiba A, Liao H and Coddet C 2010 Sens. Actuators B 144 280
[8] Kim S J, Hwang I S, Choi J K and Lee J H 2011 Thin Solid Films 519 2020
[9] Meng D, Yamazaki T, Shen Y, Liu Z and Kikuta T 2009 Appl. Surf. Sci. 256 1050
[10] Cao B, Chen J, Tang X and Zhou W 2009 J. Mater. Chem. 19 2323
[11] Hieu N V, Quang V V, Hoa N D and Kim D 2011 Curr. Appl. Phys. 11 657
[12] Hu M, Liu Q L, Jia D L and Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese)
[13] Solis J L, Saukko S, Kish L B, Gqanqvist C G and Lantto V 2001 Sens. Actuators B 77 316
[14] Kim Y S, Ha S C, Kim K, Yang H, Choi S Y and Kim Y T 2005 Appl. Phys. Lett. 86 213105
[15] Qin Y X, Sun X B, Li X and Hu M 2012 Sens. Actuators B 162 244
[16] Chen H Q, Hu M, Zeng J and Wang W D 2012 Chin. Phys. B 21 058201
[17] Wang J, Khoo E, Lee S P and Ma J 2009 J. Phys. Chem. C 113 9655
[18] Zheng F, Zhang M and Guo M 2013 Thin Solid Films 534 45
[19] Sonia A, Djaoued Y, Subramanian B, Jacques R, Eri M C, Ralf B and Achour B 2012 Mater. Chem. Phys. 136 80
[20] Gu Z, Li H, Zhai T, Yang W, Xia Y, Ma Y and Yao 2007 J. Solid State Chem. 180 98
[21] Balázsi C, Sedláckov K, Llobet E and Ionescu R 2008 Sens. Actuators B 133 151
[22] Moseley P T 1997 Meas. Sci. Technol. 8 223
[23] Williams D E 1999 Sens. Actuators B 57 1
[24] Bai S, Zhang K, Luo R, Li D, Chen A and Liu C C 2012 J. Mater. Chem. 22 12643
[25] Kim Y S, Hwang I S, Kim S J, Lee C Y and Lee J H 2008 Sens. Actuators B 135 298
[26] Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T and Weimar U 2004 Appl. Phys. Lett. 85 2280
[27] Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E and Sberveglieri G 2003 Sens. Actuators B 93 562
[28] Dräger G, Czolbe W and Leiro J A 1992 Phys. Rev. B 45 8283
[29] Zhang C, Debliquy M, Boudiba A, Liao H and Coddet C 2010 Sens. Actuators B 144 280
[30] Siciliano T, Tepore A, Micocci G, Genga A, Siciliano M and Filippo E 2009 Sens. Actuators B 138 207
[31] Ruhland B, Becker Th and Muller G 1998 Sens. Actuators B 50 85
[32] Prasad A K, Kubinski D J and Gouma P I 2003 Sens. Actuators B 93 25
[1] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[2] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[3] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[4] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[5] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[6] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[7] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[8] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[9] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[10] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[11] Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound
Yong Li(李勇), Xue-Fang Dai(代学芳), Guo-Dong Liu(刘国栋), Zhi-Yang Wei(魏志阳), En-Ke Liu(刘恩克), Xiao-Lei Han(韩小磊), Zhi-Wei Du(杜志伟), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), Guang-Heng Wu(吴光恒). Chin. Phys. B, 2018, 27(2): 026101.
[12] Low-temperature green synthesis of boron carbide using aloe vera
H V SarithaDevi, M S Swapna, G Ambadas, S Sankararaman. Chin. Phys. B, 2018, 27(10): 107702.
[13] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[14] Hexagonal boron nitride hollow capsules with collapsed surfaces: Chemical vapor deposition with single-source precursor ammonium fluoroborate
Xiaopeng Li(李肖鹏), Jun Zhang(张军), Chao Yu(郁超), Xiaoxi Liu(刘晓喜), Saleem Abbas, Jie Li(李杰), Yanming Xue(薛彦明), Chengchun Tang(唐成春). Chin. Phys. B, 2016, 25(7): 078107.
[15] Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling
Peng Zhang(张鹏), Jing Wang(王静), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2016, 25(3): 037302.
No Suggested Reading articles found!