Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 035203    DOI: 10.1088/1674-1056/23/3/035203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Growth of small diameter multi-walled carbon nanotubes by arc discharge process

K. T. Chaudharya, J. Alia, P. P. Yupapinb
a Institute of Advanced Photonics Science (APSI), Nanotechnology Research Alliance, Universiti Teknologi Malaysia 81310, Johor Bahru, Malaysia;
b Nanoscale Science and Research Alliance (N’SERA), Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Abstract  Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.
Keywords:  electric discharge      arc plasma temperature and density      carbon nanotubes  
Received:  24 June 2013      Revised:  13 July 2013      Accepted manuscript online: 
PACS:  52.80.-s (Electric discharges)  
  52.25.-b (Plasma properties)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Corresponding Authors:  K. T. Chaudhary     E-mail:  kashif.ali02@gmail.com

Cite this article: 

K. T. Chaudhary, J. Ali, P. P. Yupapin Growth of small diameter multi-walled carbon nanotubes by arc discharge process 2014 Chin. Phys. B 23 035203

[1] Journet C, Picher M and Jourdain V 2012 Nanotechnology 23 142001
[2] Cai X, Cong H and Liu C 2012 Carbon 50 2726
[3] Tam E, Levchenko I, Li J, Shashurin A, Murphy A B, Keidar M and Ostrikov K 2011 Plasma Science, IEEE Transactions on 39 2798
[4] Yong-Bing L, Li S, Chun-Yu Z, Li W, Pan-Ming F, Zhi-Guo Z, Si-Shen X and Guo-Ping W 2005 Chin. Phys. 14 2137
[5] Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V and Kizek R 2011 Journal of Materials Chemistry 21 15872
[6] Lu B, Huang H, Dong X and Lei J 2010 J. Phys. D: Appl. Phys. 43 105403
[7] Keidar M, Shashurin A, Volotskova O, Raitses Y and Beilis I I 2010 Phys. Plasmas 17 057101
[8] Gu-Ling Z, Jiu-Li W, Xing-Fang W, Wen-Ran F, Guang-Liang C, Wei-Chao G, Er-Wu N, Song-Hua F, Chi-Zi L and Si-Ze Y 2006 Chin. Phys. Lett. 23 1241
[9] Wen-Xia P, Teng L, Xian M, Xi C and Cheng-Kang W 2005 Chin. Phys. Lett. 22 2895
[10] Wei-Dong Y, Pei-Nan W, Zheng-Ping L, Lan M and Fu-Ming L 2002 Chin. Phys. 11 260
[11] Mishra M K, Phukan A and Chakraborty M 2013 Chin. Phys. Lett. 30 015202
[12] Kim Y A, Muramatsu H, Hayashi T and Endo M 2012 Carbon 50 4588
[13] Abdullahi I, Sakulchaicharoen N and Herrera J E 2012 Diamond and Related Materials 23 76
[14] Yan-Hong Y, Run-Cai M, Jin-Tao B and Xun H 2006 Chin. Phys. 15 2761
[15] Wang M, Takegawa H and Saito Y 2004 Acta Phys. Sin 53 888 (in Chinese)
[16] Arepalli S 2004 Journal of Nanoscience and Nanotechnology 4 317
[17] Volotskova O, Levchenko I, Shashurin A, Raitses Y, Ostrikov K and Keidar M 2010 Nanoscale 2 2281
[18] Long Z, Hou-Xian Z, Xuan-Zong Y, Chun-Hua F, Bin Q and Long W 2003 Chin. Phys. Lett. 20 1984
[19] Zhao T 2004 Acta Phys. Sin. 53 3961 (in Chinese)
[20] Kundrapu M, Levchenko I, Ostrikov K and Keidar M 2011 Plasma Science, IEEE Transactions on 39 2876
[21] Scalese S, Scuderi V, Bagiante S, Simone F, Russo P, DUrso L, Compagnini G and Privitera V 2010 J. Appl. Phys. 107 014304
[22] Labedz O, Lange H, Huczko A, Borysiuk J, Szybowicz M and Bystrzejewski M 2009 Carbon 47 2847
[23] Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin: Springer-Verlag)
[24] Shimotani K, Anazawa K, Watanabe H and Shimizu M 2001 Applied Physics A: Materials Science & Processing 73 451
[25] Sharma S and Turner M 2010 Study of Stochastic Heating in Single Frequency Capacitive Discharges (Dublin: Ireland)
[26] Tan G and Mieno T 2010 Jpn. J. Appl. Phys. 49 045102
[27] Gordillo-Vázquez F J, Camero M and Gomez-Aleixandre C 2005 Plasma Sources Science and Technology 15 42
[28] Sun Y, Yang S, Sheng G, Guo Z and Wang X 2012 Journal of Environmental Radioactivity 105 40
[29] Belin T and Epron F 2005 Materials Science and Engineering B 119 105
[30] Liang F, Shimizu T, Tanaka M, Choi S and Watanabe T 2012 Diamond and Related Materials 30 70
[31] Sengupta J and Jacob C 2010 Journal of Nanoparticle Research 12 457
[32] Cancado L, Takai K, Enoki T, Endo M, Kim Y, Mizusaki H, Speziali N, Jorio A and Pimenta M 2008 Carbon 46 272
[33] Endo M, Kim Y, Takeda T, Hong S, Matusita T, Hayashi T and Dresselhaus M 2001 Carbon 39 2003
[34] Liu L, Qin Y, Guo Z X and Zhu D 2003 Carbon 41 331
[35] Li Y H, Xu C, Wei B, Zhang X, Zheng M, Wu D and Ajayan P 2002 Chemistry of Materials 14 483
[36] Yan L, Chang P R and Zheng P 2011 Carbohydrate Polymers 84 1378
[37] Naeimi H, Mohajeri A, Moradi L and Rashidi A M 2009 Applied Surface Science 256 631
[38] Sawant S Y, Somani R S, Bajaj H C and Sharma S S 2012 Journal of Hazardous Materials 227–228 317
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[6] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[7] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[8] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[9] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[10] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[11] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[12] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[13] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[14] Effect of electrical discharge in water on concentration of nitrate solution
F Sohbatzadeh, H Bagheri, R Safari. Chin. Phys. B, 2017, 26(2): 025101.
[15] Structural transitions of SWNT filled with C60 under high pressure
Yong-gang Zou(邹永刚), Li Xu(徐莉), Kun Tian(田锟), He Zhang(张贺), Xiao-hui Ma(马晓辉), Ming-guang Yao(姚明光). Chin. Phys. B, 2016, 25(5): 056101.
No Suggested Reading articles found!